Чтобы освободиться от использования системы координат запишем (см. Лекция 1, формула 15) с помощью векторных обозначений, полагая . Пусть вектор равен по модулю волновому числу и направлен параллельно оси в сторону положительных значений (рис. 1). Такой вектор называется волновым. Принимая во вниание, что , запишем для произвольной точки, характеризуемой радиусом-вектором , выражение
Эта формула не зависит от системы координат и характеризует плоскую волну, распространяющуюся в направлении вектора .
Аналогичное выражение для волны можно также написать с использованием синуса:
Представление плоской волны в комплексной форме. Принимая во внимание формулу Эйлера
Величина в (6) может быть как действительной, так и комплексной или мнимой. Учитывая, что в общем случае
Будем искать решение уравнений Максвелла (см. Лекция 1, формула 2) и (см. Лекция 1, формула 3) в виде
Подставляя выражения (8) в уравнения (см. Лекция 1, формула 2) и (см. Лекция 1, формула 3) и учитывая, что
Из соотношений (11) следует, что векторы и плоской волны перпендикулярны вектору , т. е. направлению распространения. Это означает, что электромагнитная волна является поперечной. Соотношения (10) показывают, что векторы и взаимно перпендикулярны. Таким образом, , и составляют тройку взаимно перпендикулярных векторов.
Поперечность световых колебаний была открыта в 1817г. Т.Юнгом (1773 — 1829). С помощью этого представления он объяснил отсутствие интерференции лучей света, поляризованных во взаимно перпендикулярных плоскостях, обнаруженное в 1816г. экспериментально в совместной работе Д.Ф.Араго (1786 — 1853) и О.Ж.Френеля (1788 — 1827).
Взяв от обеих частей второго уравнения (10) модули и учитывая, что , , находим следующее соотношение между напряженностью электрического поля и магнитной индукцией плоской волны в вакууме:
Поскольку в (10) — вещественные величины, из (8) заключаем, что и в плоской волне изменяются в одинаковой фазе, т. е. одновременно достигают максимальных и нулевых значений (рис. 2).