Информация к вопросам
Сайт: | Информационно-образовательная среда ЯГПУ |
Курс: | ~Психология и физиология двигательной активности |
Книга: | Информация к вопросам |
Напечатано:: | Гость |
Дата: | Пятница, 27 Декабрь 2024, 07:56 |
Оглавление
- 1. История науки.
- 2. Методы наук (психологии и физиологии)
- 3. Сходства и различия предметов и объектов исследования психологии и физиологии
- 4. Строение нервной системы.
- 5. Проводящие пути спинного мозга.
- 6. Строение и функции нервных клеток (нейронов и глии)
- 7. Формирование мозга и мышц от момента оплодотворения до рождения
- 8. Формирование мышечной системы в онтогенезе
- 9. Нервно-мышечная система и передача
- 10. Потенциал действия и покоя
- 11. Синапсы. Нейромедиаторы.
- 12. Рефлекторный контроль движения. Рефлекторное кольцо и дуга.
- 13. Правила и условия выработки условных рефлексов
- 14. Спинальные рефлексы. Моносинаптические и полисинаптические рефлексы.
- 15. Проприорецепторные механизмы
- 16. Лимбическая система
- 17. Ритмы головного мозга
- 18. Механизмы сна
- 19. Импринтинг
- 20. Таламус. Роль в двигательной активности
- 21. Мозжечок. Роль в двигательной активности
- 22. Базальные ядра. Роль в двигательной активности
- 23. Двигательные зоны коры головного мозга
- 24. Кора больших полушарий, ее участие в инициации и поддержании активности
- 25. Теория уровней управления движениями
- 26. Две системы инициации движений
- 27. Нейронные механизмы сочетания движения глаз, головы, рук.
- 28. Нейронные механизмы построения движений
- 29. Сущность движения. Формирование навыка.
- 30. Функциональная ассиметрия нервной системы. Влияние на контроль и проявление движений.
- 31. Программы движений
- 32. Координация движений
- 33. Схема тела в ЦНС
1. История науки.
|
Год |
Объект наблюдения / исследования |
Исследователь |
Выводы, сфера |
1 |
17в. (1622-1675) |
Строение мозга и тканей |
Виллизий |
Анастамозы сосудов головного мозга |
2 |
17в. (1614- 1672) |
Строение мозга и тканей |
Франциск Сильвий |
Водопровод мозга, борозда |
3 |
к.18в-нач.19в. |
Строение мозга и тканей |
РОЛАНДО Луиджи
|
Автор работ, посвященных строению головного и спинного мозга.
|
4 |
1559 |
фр.Генрих 2 |
ис.Амбруаз Паре, Андреас Везалий 1514-1564 |
Травмы черепа и мозга |
5 |
1881 |
Шарль Гито |
ис.Эдвард Чарльз Спицке
|
Влияние качества нервной ткани на психику |
6 |
1901 |
Леон Чолгош
|
ис.Эдвард Чарльз Спицке
|
Влияние качества нервной ткани на психику |
7 |
между 1881 и 1901 |
Передача нер.сигнала
|
Сантьяго Рамон-и-Кахаль |
ч/з денд Синапс |
8 |
|
Передача нер.сигнала
|
Гольджи |
ч/з акс |
9 |
1920е |
Сердце лягушки |
Отто Леви |
Связь эл. и хим. проц. симпатин |
10 |
Сер 19в |
Джеймс Холман |
|
Мир слепых |
11 |
1943 |
ЛСД |
Хофман |
синестезия |
12 |
? |
Отец Педро Шерил Шлиц |
Пол Бах-и-Рита Вр.Джордж |
Сенсорное замещение А-В, А-С-В видеокамера |
13 |
1960е |
Роджер Бем |
Пол Бах-и-Рита |
Сенсорное замещение |
14 |
1960е |
Дэниэл Киш |
|
эхолокация |
15 |
1910е |
Лицевые протезы Последствия траншейной войны 1914-18 |
Анна Колман Лэдд |
Психика калек лиц |
16 |
1904-05 |
Зрит восприятие |
Тацуи Инноуэ |
Карта затылочной доли |
17 |
1958 |
Зрит восприятие |
Д.Хьюбел Т.Визел |
«гиперколонки» |
18 |
2005 |
И.Динуар |
|
Трансплантация лица |
19 |
1863 |
Фантомные боли |
С.В. Митчелл |
Психическая картина всего тела |
20 |
? |
Фантомные боли |
Рамачандран |
Зеркальная коробка Расщепление воспр. |
21 |
Нач20в.-60е. |
Куру в форе |
К.Гайдушек |
Медленные вирусы прионы Бляшки, разр.астр. |
22 |
31.12.1911 |
Д.Тернер |
Х.Кушинг |
Шишк.ж. наруш. |
23 |
1937 |
|
Д.Пейпец |
Лимб.сист. |
24 |
? |
С.М. |
|
Минд. |
25 |
1930е. |
Височ.доли об. Л.Е.Е. |
Г.Клювер Бьюси |
Галлюц, расп.пред Гипероральность либидо |
26 |
1975 |
Элиот |
А.Дамасио |
Связь между префр.д. и лимб.центром вменяемость |
27 |
1930е |
Рут сестра |
У.Пенфилд |
Эпилепсия Перед.,Височ.доли |
28 |
1872 |
Рафферти |
Р.Бартолоу |
Карта сенс и мот. кора |
29 |
1919 |
В.Вильсон |
Грейсон |
Инсульт.повр.тем.д. |
30 |
1974 |
У.Дуглас |
|
Синдром игнорир. |
31 |
1918 |
М. |
|
Синдром Капграсса |
32 |
1908, 2 мир. |
|
|
Синдром чужой руки |
33 |
1887 |
Алк. Бери-бери |
С.Корсаков |
Синдром Веринике-К. |
34 |
1930е- |
Генри М. |
У.Сковилл |
гиппокамп |
35 |
1980е |
К.С. |
Э.Тулвинг |
Лиш.эпизод.пам. |
36 |
1992 |
Э.П. |
|
Герпес и лим.с. |
37 |
1920е |
С.Шеришевский |
А.Лурия |
Гипермненония Основатель нейропсихологии |
38 |
1861 |
Тан |
П.Брока |
Центр речи |
39 |
1941 |
|
У.Сперри Гаццанига |
Межполуш.связь |
40 |
1848 |
Ф.Гейдж |
Д.Харлоу |
Фр.доли функц. |
41 |
? |
Клайв Виринг |
|
Герпес ч.амнезия |
42 |
18в |
Лягушка, сокращение лапы |
Л.Гальвани |
биоэлектричество |
43 |
18век |
|
Р.Декарт |
Идея рефлекса |
44 |
1863 |
В том числе мозг лягушки |
И.М.Сеченов |
Рефлексы головного мозга |
45 |
К19в. |
|
И.П.Павлов |
Учение о физиологии условных рефлексов |
46 |
К 19в. |
|
Г.Катон |
Вызванные потенциалы |
47 |
К19в. |
Мозг собаки в покое и нагрузке |
И.Правдич-Неминский |
|
48 |
Н20в. |
Мозг собаки |
Г.Бергер |
1ээг альфа-р. |
49 |
|
|
|
|
2. Методы наук (психологии и физиологии)
Самыми первыми методами, используемыми в психологии и физиологии, были наблюдение и умозаключение, которые, однако, не утратили своего значения и на современном этапе. Но физиолог не может удовлетвориться только наблюдением, как психолог, так как оно отвечает лишь на вопрос, что происходит в организме. Важно выяснить также, как и почему происходят физиологические процессы. Для этого необходимы опыты, эксперименты, т.е. воздействия, которые создаются искусственно самим исследователем.
Метод магнитно-резонансной томографии. Головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компьютерной графики отображается на экране монитора
Метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон-излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ. Метод позволяет наблюдать в головном мозге очаги возбуждения, например, при продумывании отдельных слов, при их проговаривании вслух, что свидетельствует о его высоких разрешающих возможностях. Вместе с тем многие физиологические процессы в головном мозге человека протекают значительно быстрее тех возможностей, которыми обладает томографический метод.
В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.
Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения).
С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений.
Вольта изобрел устройство для производства электрического тока, которое вначале было названо вольтовым столбом, а в наше время называют гальваническим элементом, но имя Вольта осталось в науке как наименование единицы электрического напряжения — вольт.
Г. Катон впервые поместил электроды (металлические проволочки) на затылочные доли головного мозга собаки и зарегистрировал колебания электрического потенциала при освещении светом ее глаз. Подобные колебания электрического потенциала сейчас называют вызванными потенциалами и широко используют при исследовании мозга человека.
Г. Бергером. Используя уже значительно более совершенные приборы, он зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой.
Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт (1 мкВ = 1/1000000 В).
В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии.
Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500-1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии.
3. Сходства и различия предметов и объектов исследования психологии и физиологии
Учитывая комплексность дисциплины можно выделить сказать, что основные предметы нашей дисциплины:
1. Предмет психологии - это психика как высшая форма взаимосвязи живых существ с предметным миром, выраженная в их способности реализовывать свои побуждения и действовать на основе информации о нем.
2.Предметом физиологии, ее содержанием является изучение общих и частных механизмов деятельности целостного организма и всех его органов и систем.
Объект психологии - это закономерности психики как особой формы жизнедеятельности человека и поведения животных. Эта форма жизнедеятельности в связи с ее многоплановостью может изучаться в самых разнообразных аспектах, которые исследуются различными отраслями психологической науки.
Объект физиологии - закономерности функционирования органов, систем, тканей организма.
Самое общее уточнение могло бы состоять в том, что познание «психического содержания» – дело не только науки, но и других видов человеческой деятельности, таких, например, как искусство или религия. Если же рассмотреть лишь один вид деятельности – науку, то и здесь оказывается, что «психическое содержание» исследуется представителями как естественных, например физиологии, так и общественных наук, к которым принято относить психологию, сочетающую естественнонаучные методы с «герменевтическими» (моделирование в психике исследователя психики испытуемого, зависящее от индивидуально-психологических особенностей исследователя [Дружинин, 1993]).
Контакты между названными науками, которые возникают при решении проблем, представляющих взаимный интерес, часто «искрят» [Швырков, 1995], что вызывает у многих физиологов и психологов желание изолировать свою дисциплину, оградить её от посторонних посягательств. Однако выдающимся психологам уже давно было очевидно, что предпринимаемые как психологами, так иногда и физиологами попытки эмансипировать психологию от физиологии совершенно неправомерны, поскольку предмет психологии – нейропсихический процесс [Бехтерев, 1991], целостная психофизиологическая реальность [Выготский, 1982], которая лежит в основе всех без исключения психических процессов, включая и самые высшие [Рубинштейн, 1973]. Со стороны психофизиологии также были приведены веские аргументы в пользу того, что самостоятельная, отделённая от психологии физиология не может выдвинуть обоснованной концепции целостной деятельности мозга [Швырков, 1995].
«Изоляция какой-либо дисциплины есть верный показатель её ненаучности», – справедливо заключает М. Бунге, отвечая на вопрос: «Является ли психология автономной дисциплиной?» Психология же тесно взаимодействует и даже перекрывается с биологией, в частности, с физиологией [Bunge, 1990], причём область их взаимодействия постоянно увеличивается. Логика развития методологии и методов науки, а также «социальные заказы», заставляющие преодолевать междисциплинарные барьеры [Абульханова и др., 1996], определяют возможность и необходимость всё большего привлечения методов физиологии для разработки проблем профессионального и психического здоровья, сознания и бессознательного, изучения структуры сложной деятельности человека – совместной, речевой, операторской и мн. др.
Связь и взаимозависимость психологии и физиологии настолько сильны, что позволяют рассматривать их развитие как коэволюцию. Вкратце охарактеризуем этот процесс. Современная психология в значительной степени представлена интуитивной бытовой, или «обыденной психологией» (folk psychology), под которой понимается основанное на здравом смысле, не требующее точных определений понимание психических процессов и состояний [Churchland, 1986]. Дело в том, что такие понятия обыденной психологии, как память, внимание, воля, ум, влечение, чувство и другие не только употребляются в быту для объяснения и предсказания поведения людей, но и влияют на формирование собственно научного знания [Sternberg, 1985; Semin, 1987]. Они используются в психологических исследованиях, как при обосновании проблем исследования, так и при трактовке его результатов. Закономерности и феномены, выявляемые в подобных исследованиях, становятся базой не только для следующих психологических исследований, но и для формулировки задач экспериментов, в которых применяются методы физиологии.
Решение этих задач способствует пересмотру и фрагментации исходных концепций и понятий (сколько, например, разнообразнейших процессов, «систем» и прочего объединяется сейчас термином «память»!), формулировке новых вопросов и т.д. В конце концов в ряде случаев может даже оказаться, что выяснять надо что-то совсем другое. Скажем, современная физиология не исследует, как образуются и движутся «животные духи».
Наряду с обыденной психологией существует и обыденная физиология, которая взаимодействует и с обыденной психологией, и с собственно наукой. Однако здесь мы можем пренебречь самостоятельным значением обыденной физиологии и ограничиться рассмотрением лишь обыденной психологии, полагая, что последняя инкорпорирует ту часть обыденного физиологического знания, которая имеет отношение к интересующему нас проблемному полю.
Следует подчеркнуть, что в процессе коэволюции не происходит «истребления» психологии [Ярошевский, 1996], её исчезновения, замены физиологией, так как психологическое исследование формирует специфический компонент описания поведения и деятельности, необходимый как для самой психологии, так и для сопредельных дисциплин. Происходит же постепенное замещение бытовых понятий в психологии и физиологии научными. В связи с этим предполагается, что по ходу коэволюции психология и физиология будут всё меньше зависеть от обыденной психологии и на определённом этапе замещение завершится [Churchland, 1986]. По-видимому, это предположение полностью справедливо лишь в том случае, если говорить не об обыденной психологии вообще, а о ныне существующей обыденной психологии. В процессе развития на место замещённых придут новые понятия обыденной науки. На чём основано это утверждение?
Ещё до возникновения науки, в доисторическую эпоху, представления о психике, или душе, складывались у людей как обобщённые характеристики внешнего поведения, как гипотезы о его детерминантах и механизмах. В связи с этим даже в наиболее примитивных языках имеются обозначения психических свойств и состояний (см. в [Швырков, 1995]). С появлением науки она становится, наряду с религией, искусством, обыденным опытом и т.д., одним из источников концепций, идей и терминов, включающихся в обыденное сознание и формирующих обыденную науку. Люди начинают рассматривать их как само собой разумеющиеся и составляющие «реальность» [Московичи, 1995].
Можно полагать в связи с этим, что обыденная наука продолжит своё существование на всём протяжении процесса коэволюции, осуществляя «обмен» с собственно наукой. Первая будет поставщиком концепций и проблем (конечно, не исключительным – много проблем в собственно науке имеет внутринаучное происхождение) мировоззренческого или практического характера, вторая будет решать эти проблемы и возвращать переработанные концепции, внедрять новые или устранять дискредитированные. При этом количество ассимилированных и преобразованных понятий собственно науки в науке обыденной будет постоянно и быстро увеличиваться, если авторитет науки сохранится и общество не последует антисциентистским рекомендациям, таким, как дополнить отделение государства от церкви отделением его и от науки [Фейрабенд, 1986].
Каково же место психофизиологии, науки, обязанной своим происхождением и даже названием сосуществованию психологии и физиологии и призванной установить между ними связь, в описанной ранее коэволюции? Каков её специфический вклад? Можно ли свести роль психофизиологии к использованию методов физиологии для изучения психических процессов и состояний? Ответы, которые дают на эти вопросы разные авторы, в том числе и авторы настоящего учебника, значительно различаются.
Известно, что даже физическую систему нельзя описать каким-либо одним теоретическим языком, множественность точек зрения на неё неустранима [Пригожий, Стенгерс, 1986]. Тем более не должно вызывать удивления существование различающихся позиций, разных теоретических языков и школ в психофизиологии, которая, по-видимому, имеет дело с наиболее сложным комплексом проблем, стоящих перед человеком.
Упомянутые различия находят своё выражение не только в многообразии ответов на один и тот же вопрос, но и в том, что отдельные вопросы психофизиологии, рассматриваемые одними исследователями как центральные, с других теоретических позиций могут расцениваться как малозначимые или даже неверно поставленные. Поэтому мы полагали, что в учебнике по психофизиологии, написанном одним автором, даже сам набор освещаемых проблем окажется в сильнейшей мере зависимым от взглядов автора. Кроме того, мы учитывали, что психофизиология находится на стыке разных наук: философии, психологии, нейронаук, физиологии, в том числе физиологии высшей нервной деятельности, генетики, биохимии и т.д. Во многом ситуация здесь сходна с имевшей место при подготовке руководства по экспериментальной психологии [I960], в предисловии к которому С.С.Стивенс отмечал, что никто из представителей этой науки не обладает достаточной эрудицией, чтобы справиться с подобной задачей в одиночку.
4. Строение нервной системы.
Традиционно со времён французского физиолога Биша (начало XIX в.) нервную систему разделяют на соматическую и вегетативную, в каждую из которых входят структуры головного и спинного мозга, называемые центральной нервной системой (ЦНС), а также лежащие вне спинного и головного мозга и поэтому относящиеся к периферической нервной системе нервные клетки и нервные волокна, иннервирующие органы и ткани организма.
Соматическая нервная система представлена эфферентными (двигательными) нервными волокнами, иннервирующими скелетную мускулатуру, и афферентными (чувствительными) нервными волокнами, идущими в ЦНС от рецепторов. Вегетативная нервная система включает в себя эфферентные нервные волокна, идущие к внутренним органам и рецепторам, и афферентные волокна от рецепторов внутренних органов. По морфологическим и функциональным особенностям вегетативная нервная система разделяется на симпатическую и парасимпатическую.
Головной мозг состоит из пяти отделов: продолговатого мозга, мозжечка, среднего, промежуточного мозга и переднего мозга.
Продолговатый мозг является продолжением спинного мозга. В нем находятся ядра VIII—XII пар череп но мозговых нервов. Здесь расположены жизненно важные центры регуляции дыхания, сердечно-сосудистой деятельности пищеварения, обмена веществ. Ядра продолговатого мозга принимают участие в осуществлении безусловных пищевых рефлексов (отделение пищеварительных соков, сосание, глотание), защитных рефлексов (рвота, чихание, кашель, моргание). Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.
Мозжечок и варолиев мост образуют задний мозг. Через мост проходят нервные пути, связывающие передний и средний мозг с продолговатым и спинным. В мосту расположены ядра V—VIII пар черепно-мозговых нервов. Серое вещество мозжечка находится снаружи и образует кору слоем 1—2,5 мм. Мозжечок образован двумя полушариями, соединенными червем. Ядра мозжечка обеспечивают координацию сложных двигательных актов организма. Большие полушария головного мозга через мозжечок регулируют тонус скелетных мышц и координируют движения тела. Мозжечок принимает участие в регуляции некоторых вегетативных функций (состав крови, сосудистые рефлексы).
Средний мозг расположен между варолиевым мостом и промежуточным мозгом. Состоит из четверохолмия и ножек мозга. Через средний мозг проходят восходящие пути к коре больших полушарий и мозжечку и нисходящие пути к продолговатому и спинному мозгу (проводниковая функция). В среднем мозге находятся ядра III и IV пар черепно-мозговых нервов. С их участием осуществляются первичные ориентировочные рефлексы на свет и звук: движение глаз, поворот головы в сторону источника раздражения. Средний мозг также участвует в поддержании тонуса скелетных мышц.
Промежуточный мозг расположен над средним мозгом. Главные его отделы — таламус (зрительные бугры) и гипоталамус (подбугровая область). Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма (за исключением обонятельного). Информация получает в таламусе соответствующую эмоциональную окраску и передается в большие полушария мозга. Гипоталамус является главным подкорковым центром регуляции вегетативных функций организма, всех видов обмена веществ, температуры тела, постоянства внутренней среды (гомеостаза), деятельности эндокринной системы. В гипоталамусе расположены центры чувства насыщения, голода, жажды, удовольствия. Ядра гипоталамуса участвуют в регуляции чередования сна и бодрствования.
Передний мозг — самый крупный и развитый отдел головного мозга. Он представлен двумя полушариями — левым и правым, отделенными продольной щелью. Полушария соединены толстой горизонтальной пластинкой — мозолистым телом, которое образовано нервными волокнами, идущими поперечно из одного полушария в другое. Три борозды — центральная, теменно-затылочная и боковая — делят каждое полушарие на четыре доли: лобную, теменную, височную и затылочную. Снаружи полушария покрывает слой серого вещества — коры, внутри расположены белое вещество и подкорковые ядра. Подкорковые ядра — филогенетически древняя часть мозга, управляющая бессознательными автоматическими действиями (инстинктивное поведение).
Кора мозга имеет толщину 1,3—4,5 мм. Благодаря наличию складок, извилин и борозд общая площадь коры взрослою человека составляет 2000—2500 см2. Кора состоит из 12—18 млрд нервных клеток, расположенных в шесть слоев.
Хотя кора больших полушарий функционирует как единое целое, функции отдельных ее участков неодинаковы. В сенсорные (чувствительные) зоны коры поступают импульсы от всех рецепторов организма. Так, зрительная зона коры расположена в затылочной доле, слуховая — в височной и т. д. В ассоциативных зонах коры осуществляется хранение, оценка, сопоставление поступающей информации с полученной ранее и т. п. Таким образом, в этой зоне происходят процессы запоминания, научения, мышления. Двигательные (моторные) зоны отвечают за сознательные движения. От них нервные импульсы поступают к поперечно-полосатой мускулатуре.
Белое вещество переднего мозга образовано нервными волокнами, связывающих между собой разные отделы мозга.
Таким образом, большие полушария головного мозга являются высшим отделом ЦНС, обеспечивающим наиболее высокий уровень приспособления организма к меняющимся условиям внешней среды. Кора больших полушарий является материальной основой психической деятельности.
12 пар черепных нервов
Каждая из упомянутых пар нервов обозначается римской цифрой с первой по двенадцатую, согласно их нахождению на основании мозга. Они располагаются в следующем порядке:
1) обонятельные;
2) зрительные;
3) глазодвигательные;
4) блоковые;
5) тройничные;
6) отводящие;
7) лицевые;
8) слуховые;
9) языкоглоточные;
10) блуждающие;
11) добавочные;
12) подъязычные.
Они включают вегетативные, эфферентные и афферентные волокна, а их ядра расположены в сером веществе мозга. В зависимости от состава волокон, все черепные нервы (12 пар) подразделяются на чувствительные, двигательные и смешанные.
Спинномозговые нервы представляют собой метамернорасположенные, парные нервные стволы. Количество спинномозговых нервов, вернее, их пар, соответствует количеству пар сегментов спинного мозга и равняется тридцати одному: восемь пар шейных нервов, двенадцать пар грудных, пять поясничных, пять крестовых и одна пара копчиковых нервов. С их помощью спиной мозг анализирует состояние и осуществляет контроль туловища, таза, конечностей, внутренних органов брюшной и грудной полости.
По своему происхождению спинномозговые нервы соответствуют определенной части тела, то есть иннервируется развившийся из некого сомита участок кожи - производное дерматоза, из миотома – мышцы, из склеротома – кости. Каждый нерв берет свое начало из «личного» межпозвонкового отверстия, при этом образовывается из соединяющихся в одном стволе переднего (двигательный) и заднего (чувствительный) корешков.
Спинномозговые нервы достигают в длину всего полтора сантиметра, в конце все они разветвляются одинаковым образом на заднюю и переднюю оболочечные ветви.
Задняя ветвь протягивается между позвонками и поперечными отростками пары в область спины, где способствует иннервации глубоких мышц (разгибают туловище) и кожи. Спинномозговые нервы задних ветвей возвращаются назад между поперечными позвонками, в частности, между их отростков, и огибая их суставные отростки. Исключая первый шейный, а также четвертый, пятый копчиковый и крестцовый, позвонки разделяются на ramus medialis и lateralis, которые снабжают заднюю поверхность кожи шеи и спины, затылка, глубокие спинные мышцы.
Помимо этого от спинномозговых нервов отходят еще две ветви: соединительная - к симпатическому стволу (для иннервации сосудов и внутренностей), и возвращающаяся ветвь - идущая к межпозвоночному отверстию (для иннервации оболочек спинного мозга).
Сплетения спинномозговых нервов передних ветвей устроены более сложным образом и иннервируют кожаный покров и мускулы вентральной стенки туловища и обеих пар конечностей. Так как в своей нижней части кожа живота принимает активное участие в формировании наружных половых органов, то кожа, которая их покрывает, так же иннервируется передними ветвями. За исключением первых двух, последние ветви намного крупнее задних.
Сплетения спинномозговых нервов передних ветвей в своем первоначальном мето-мерном строении сохраняются только в грудном отделе. В других отделах, которые связанны с конечностями (при развитии которых теряется сегментарность), отходящие от спинномозговых передних ветвей волокна переплетаются. Таким образом, происходит формирование нервных сплетений (plexus), где и происходит взаимообмен волокнами различных невромеров. В данных сплетениях большое количество спинномозговых нервов принимает участие в очень сложном процессе, в котором происходит перераспределение волокон: периферические нервы принимают от передних ветвей каждого спинномозгового нерва волокна, что означает тот факт, что каждый периферический нерв содержит волокна от многих сегментов спинного мозга.
Сплетения различаются на три вида: пояснично-крестцовое, плечевое и шейное. Пояснично-крестцовое, в свою очередь подразделяется на копчиковое, крестцовое и поясничное.
Из вышеперечисленного следует сделать вывод, что поражение и повреждение некого нерва не влечет за собой нарушение функционала всех мышц, которые получают иннервацию из сегментов, дающих начало данному нерву. Спинномозговые нервы, отходящие от сплетений, являются смешанными, вследствие чего картина поражения нерва складывается из нарушений чувствительности, вегетативных расстройств, а так же двигательных нарушений.
5. Проводящие пути спинного мозга.
Нервные волокна спинного мозга формируют его белое вещество и используются для проведения множества сигналов от сенсорных рецепторов в ЦНС, сигналов между нейронами самого спинного мозга и между нейронами спинного и других отделов ЦНС, а также от нейронов спинного мозга к эффекторным органам. Значительную часть проводящих путей спинного мозга составляют аксоны так называемых проприоспинальных нейронов. Волокна этих нейронов создают связи между спинальными сегментами и не выходят за пределы спинного мозга.
В качестве наиболее известных примеров простейших нейронных сетей проведения сигналов в спинном мозге и их использования для контроля работы эффекторных органов являются нейронные сети рефлекторных дуг соматического и вегетативного рефлексов. В проведении сигнала (нервного импульса), первоначально возникающего в рецепторном нервном окончании, принимают участие чувствительный нейрон и его волокна, вставочный и моторный нейроны.
Сигнал не только проводится нейронами в пределах сегмента, в которых они располагаются, но обрабатывается и используется для осуществления рефлекторной реакции на раздражение рецептора.
Сигналы, возникающие в рецепторах поверхности тела, мышцах, сухожилиях, внутренних органах, проводятся также в вышележащие структуры ЦНС но волокнам канатиков (столбов) спинного мозга, называемых восходящими (чувствительными) проводящими путями. Эти пути образуются волокнами (аксонами) чувствительных нейронов, тела которых располагаются в спинальных ганглиях, и вставочных нейронов, тела которых находятся в задних рогах спинного мозга. Ход волокон, проводящих сигналы от рецепторов различной чувствительности (модальности), неодинаков. Например, проводящие пути от проприорецепторов проводят в мозжечок и кору головного мозга сигналы о состоянии мышц, сухожилий, суставов. Волокна этого пути являются аксонами чувствительных нейронов спинальных ганглиев. Войдя через задние корешки в спинной мозг, они по той же стороне спинного мозга (не совершая перекреста), в составе тонкого и клиновидного пучков, восходят до нейронов продолговатого мозга, где заканчиваются образованием синапса и передают информацию на второй афферентный нейрон пути.
Этот нейрон проводит обработанную информацию по аксону, переходящему на противоположную сторону, к нейронам ядер таламуса. После переключения на нейронах таламуса информация о состоянии двигательного аппарата проводится к нейронам постцентральной области коры мозга и используется для формирования ощущений о степени напряжения мышц, положения конечностей, угла сгибания в суставах, пассивного движения, вибрации.
В составе тонкого пучка проходит также часть волокон от рецепторов кожи, проводящих информацию, используемую для формирования осознаваемой тактильной чувствительности в виде прикосновения, давления, вибрации.Другие спинальные чувствительные пути образованы аксонами вторых афферентных (вставочных) нейронов, тела которых находятся в задних рогах спинного мозга.
В составе этого пути проходят волокна, проводящие сигналы болевой и температурной чувствительности, а также часть волокон, проводящая сигналы тактильной чувствительности.
В боковых канатиках проходят также передний и задний спиномозжечковые тракты. Они проводят сигналы от проприорецепторов к мозжечку.
Сигналы по восходящим чувствительным путям проводятся также в центры АНС, ретикулярную формацию ствола мозга и другие структуры ЦНС.
К нейронам спинного мозга поступают сигналы нейронов вышерасположенных структур головного мозга. Они следуют по аксонам нервных клеток, формирующих нисходящие (главным образом двигательные) проводящие пути, используемые для контроля тонуса мышц, формирования позы и организации движений. Важнейшими среди них являются кортикоспинальный (пирамидный), руброспинальный, ретикулоспинальный, вестибулоспинальный и тектоспинальный пути.
6. Строение и функции нервных клеток (нейронов и глии)
1.Нейрон
Нервная система состоит из множества нервных клеток — нейронов. Нейроны могут быть различной формы и величины, но обладают некоторыми общими особенностями. Все нейроны имеют четыре основных элемента.
- Тело нейрона представлено ядром с окружающей его цитоплазмой. Это метаболический центрнервной клетки, в котором протекает большинство обменных процессов. Тело нейрона служит центром системы нейротрубочек, расходящихся лучами в дендриты и аксон и служащих для транспорта веществ. Совокупность тел нейронов образует серое вещество мозга. От тела нейрона радиально отходят два или более отростков.
- Короткие ветвящиеся отростки называются дендритами. Их функция — проведение сигналов, поступающих из внешней среды или от другой нервной клетки.
- Длинный отросток— аксон (нервное волокно) служит для проведения возбуждения от тела нейрона к периферии. Аксоны окружены шванновскими клетками, выполняющими изолирующую роль. Если аксоны просто окружены ими, такие волокна называются немиелинизированными. В том случае, если аксоны «обмотаны» плотно упакованными мембранными комплексами, образуемыми шванновскими клетками, ах называют миелинизированными. Миелиновые оболочки белого цвета, поэтому совокупности аксонов образуют белое вещество мозга. У позвоночных животных оболочки аксонов прерываются через определенные промежутки (1-2 мм) так называемыми перехватами Ранвье. Диаметр аксонов составляет 0,001-0,01 мм (исключение — гигантские аксоны кальмара, диаметр которых около 1 мм). Длина аксонов у крупных животных может достигать нескольких метров. Объединение сотен идя тысяч аксонов представляет собой пучок волокон — нервный ствол (нерв).
- От аксонов отходят боковые ветви, на конце которых располагаются утолщения. Это — зона контакта с другими нервными, мышечными или железистыми клетками. Она называется синапсом. Функцией синапсов является передача возбуждения. Один нейрон через синапсы может соединяться с сотнями других клеток.
Нейроны бывают трех видов. Чувствительные (афферентные или центростремительные) нейроны возбуждаются за счет внешних воздействий и передают импульс с периферии в центральную нервную систему (ЦНС). Двигательные (эфферентные или центробежные) нейроны передают нервный сигнал из ЦНС мышцам, железам. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, называются вставочными нейронами (интернейронами).
Таким образом, функция нервных клеток заключается в генерировании возбуждений, их проведении и передаче другим клеткам.
2. Глия
Нервная ткань – это не только скопление нейронов. Ее также образуют собственно нейроглия и глиальные макрофаги. Только взаимосвязанная работа всех клеточных элементов способна обеспечить полноценную работу головного мозга.
Особенности происхождения глиальных элементов легли в основу их деления на макроглию (собственно нейроглию) и микроглию.
Макроглия неоднородна в морфо-функциональном отношении. К ней относят следующие типы клеток:
- Эпендимальные;
- Олигодендроциты;
- Астроциты.
При этом каждая из групп также имеет свои виды клеток.
Эпендимальные клетки представлены эпендимоцитами I-го и II-го типов, а также таницитами. Располагаются они в один слой, образуют выстилку мягкой мозговой оболочки (I тип), внутренней поверхности желудочков, цереброспинального канала (II тип) и дно третьего желудочка (танициты). Такое строение обеспечивает выполнение барьерной функции.
Олигодендроциты представлены в центральной и в периферической нервной системе. Макроглия наиболее многочисленно представлена именно этими клетками. Виды олигодендроцитов:
- Центральные глиоциты;
- Сателиты;
- Леммоциты.
Астроциты – нейроглиальные элементы звездчатой формы с многочисленными отростками. К их особенности относят то, что они представлены только в центральной нервной системе как в белом веществе (протоплазматическая астроглия), так и в сером (волокнистая астроглия).
В понятие «нейроглия» также входят микроглиальные клетки или глиальные макрофаги. Они имеют отличное от макроглии не только строение, но и происхождение. Эти особые виды многоотросчатых клеток разбросаны по всему веществу головного мозга и имеют способность к фагоцитозу (такой особенностью обладает и ряд других нейроглиальных элементов). Основная роль глиальных макрофагов состоит в защите церебральных структур от патологических агентов.
Происхождение
Глиальные клетки имеют различное происхождение. В зависимости от того, какие клетки явились предшественниками нейроглиальных элементов, выделяют макро- и микроглию.
Макроглия развивается из эктодермы (наружного эмбрионального листка), т.е. имеет общих с нейронами предшественников. Микроглиальные макрофаги имеют мезодермальное происхождение (из среднего зародышевого листка). По сути элементы микроглии формируются из структур крови (эритромиелоидов, примитивных макрофагов и других клеток гемоцитарного ростка), заселяющие мозг на ранних этапах эмбриогенеза. В последующем число церебральных макрофагов поддерживается в результате пролиферации.
Свойства
Глиальные клетки обладают рядом отличительных характеристик. Такие особенности образуют уникальные для работы нейронов условия. Глиоциты способны к делению, но не в состоянии самостоятельно воспроизводить и осуществлять передачу нервного импульса. Мембранный потенциал глий существенно выше, чем тот же показатель нейронов. Это определяется концентрацией катионов калия в цитоплазме (для других ионов глиальные клетки имеют низкую проницаемость). При воздействии раздражителей клетки глии способны отвечать лишь медленноволновыми (градуальными) изменениями уровня мембранного потенциала, тогда как при нейронном ответе типичны локальные спайки.
Функции
Для полноценной работы нервной системы в целом необходима слаженная работа как глии, так и нейронов. Глиоциты, точно также как сосуды и оболочки, формируют строму ткани головного и спинного мозга. Кроме того, глиальные элементы часто обеспечивают специфичность нейронов. Особенности строения и биохимии нейроглии обуславливают выполняемые ею функции:
- Опорная;
- Трофическая;
- Разграничительная;
- Секреторная;
- Защитная;
- Репаративная (астроглия)
- Обеспечение интегративных церебральных функций (формирование условных рефлексов и доминанты);
- Формирование гематоэнцефалического барьера;
- Обеспечение гомеостаза;
- Образование миелина.
7. Формирование мозга и мышц от момента оплодотворения до рождения
После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой — эктодерма, внутренний — эндодерма и между ними — мезодерма. Нервная система развивается из наружного зародышевого листка — эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия. В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.
В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) — передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части — спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3-4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной — моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.
В течение первых 2 мес. беременности образуется основной (среднемозговой) изгиб головного мозга: передний мозг и промежуточный мозг загибаются вперед и вниз под прямым углом к продольной оси нервной трубки. Позже формируются еще два изгиба: шейный и мостовой. В этот же период первый и третий мозговые пузыри разделяются дополнительными бороздами на вторичные пузыри, при этом появляется 5 мозговых пузырей. Из первого пузыря образуются большие полушария головного мозга, из второго — промежуточный мозг, который в процессе развития дифференцируется на таламус и гипоталамус. Из оставшихся пузырей формируются мозговой ствол и мозжечок. В течение 5—10-й недели развития начинается рост и дифференцировка конечного мозга: образуются кора и подкорковые структуры. На этой стадии развития появляются мозговые оболочки, формируются ганглии периферической вегетативной нервной системы, вещество коры надпочечников. Спинной мозг приобретает окончательное строение.
В следующие 10—20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки
мозговых структур, который заканчивается только с наступлением половозрелости. Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.
Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг — в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.
В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы.
Мышцы.
В раннем эмбриогенезе скелетные мышцы развиваются из двух источников: мезенхимы глоточных (жаберных) дуг (жевательные, мимические) и миотомов (большинство мышц туловища и конечностей, некоторые мышцы головы, шеи).
У человека закладывается около сорока парных (справа и слева от нотохорды (хорды)) миотомов. Миотомы делят на передвушни, в количестве трех, которые являются источником развития мышц глаза, затылочные (четыре миотомы), шейные (восемь миотомов), декабре (двенадцать миотомов), поясничные (пять миотомов), крестцовые (пять миотомов ) и копчиковые (четыре миотомы) . На ранних стадиях эмбриогенеза устанавливается связь между миотома и определенной частью нервных клеток соответствующих невротомив. Эта связь не изменяется в течение всей жизни индивида, как бы далеко не сместился миотом или его часть (широкая мышца спины, диафрагма и т.д.).
Миотомы в дальнейшем разрастаются в вентральном направлении по сегментарным плану. Считают, что каждый из них делится на дорзальной и вентральную части. С дорзальной части миотомов развивается аутохтонных мускулатура спины, иннервируется задними ветвями спинномозговых нервов. С вентральной части возникают местные (аутохтонных) мышцы передних отделов туловища и обеих конечностей, иннервация которых осуществляется передними ветвями спинномозговых нервов.
В следующей дифференциации тканей организма и главным образом в связи с развитием конечностей происходят значительные смещения и перегруппировок миотомов (части целого, группы). Вследствие этого в эмбриогенезе наблюдаются такие процессы.
1. Сегментная строение мускулатуры очень стирается: миотомы частично сливаются (например, прямая мышца живота) или объединяются в сплошной мышечный пласт (мышца - выпрямитель позвоночника, косые и поперечные мышцы живота и т.д.).
2. Миграция многих мышц: мышцы лица, развившиеся из мезенхимы второй глоточной (жаберной) дуги, сместились на лицо; трункопетальни (от лат. Truncus - туловище и peto - следовать) мышцы, возникшие на конечностях, переместились на туловище (широчайшая мышца спины, большой грудной и большой поясничный мышцы и др.); трункофугальни мышцы (от лат. fugo - бегу) - с туловища на конечности (трапециевидная, передняя зубчатая и др.)..
3. Мышца, развившийся в виде одного слоя, в дальнейшем может расщепиться продольно на два самостоятельных мышцы (трапециевидный, грудино-ключично-сосцевидной) или тангенциально на слои с различным направлением мышечных волокон (косые и поперечная мышцы живота ).
Эмбриональное развитие полосатой мускулатуры происходит неравномерно, что в значительной степени отражает филогенетические факторы, обусловленные становлением высших приматов и человека в частности. В связи с этим те мышцы, которые в конечном состоянии у человека вполне редуцировались или сохранились в рудиментарном состоянии, закладываются в эмбриогенезе относительно поздно, причем некоторые из них вскоре исчезают совсем (например, мышцы, приводящие II, IV и V пальцы) или очень дегенерируют течение эмбрионального развития (затылочно-лобный, ушные, задние верхние и нижние зубчатые мышцы, подкожная мышца и т.д.).
Наряду с этим многие мышц и главным образом те из них, которые развились прогрессивно в связи с происхождением человека, закладываются, как правило, рано и в дальнейшем растут (большую ягодичную мышцу) и дифференцируются (мышцы I пальца стопы, особенно кисти).
8. Формирование мышечной системы в онтогенезе
Развитие мышц во время внутриутробного периода начинается с синтеза миозина и актина в 5-недельном возрасте. Мышечные волокна у новорожденных в 5 раз тоньше, чем у взрослых, поперечная ис- черченность их выражена слабо.
Крупная голова новорожденного при слабо развитой тонической мускулатуре не может долго удерживаться в вертикальном положении. Только через 2,5 месяца после рождения ребенок начинает самостоятельно удерживать голову в вертикальном положении. Тоническая мускулатура интенсивно развивается на первом году жизни, и это обеспечивает возможность сидеть в полгода и стоять прямо в год. В развитии тонической скелетной мускулатуры выражен краниокау- дальный градиент: вначале в 2,5—3 месяца развиваются мышцы шеи, в 5-6 месяцев — мышцы туловища, в 11—12 месяцев мышцы таза и ног. В первые недели после рождения ребенок выполняет только непроизвольные движения. Тонус мышц-сгибателей значительно превышает тонус мышц-разгибателей (специфическая поза новорожденного). Наибольшую работу производят мышцы челюстей и щек. Ко 2—3-му месяцу жизни появляются первые признаки тонической активности мышц спины и шеи. Масса скелетных мышц мала, и они слабо обеспечены окислительными ферментами. В первые месяцы жизни главной функцией скелетной мускулатуры является участие в процессе терморегуляции. Поэтому стимулом двигательной активности скелетных мышц служит изменение температуры окружающей среды. В этот период для детей характерна постоянная активность скелетной мускулатуры. Даже во время сна мышцы находятся в состоянии выраженного тонуса. Постоянная активность скелетных мышц является стимулом бурного роста мышечной массы, конечностей, правильного формирования суставов.
К 3-летнему возрасту тоническая мускулатура, обеспечивающая удержание позы, уже достаточно сформирована. В дальнейшем ее развитие идет в сторону количественного нарастания и увеличения функциональной устойчивости. Фазические мышцы, от которых зависят сила и быстрота, в этом возрасте лишь начинают развиваться. С этим связаны особенности движений трехлетних детей: большая медлительность, плавность движений, отсутствие резких рывков. Во время бега нет фазы полета из-за слабого развития мышц ног. Но именно в это время интенсивно развиваются мышцы рук, что обусловливает тонкие движения пальцев. Мышцы годовалого ребенка обеспечивают ему прямохождение в невысоком темпе, в 3-летнем возрасте ребенок уже передвигается быстро, но ни силой, ни быстротой, ни выносливостью не обладает, так как мышцы и управляющие ими нервные центры еще не созрели. Мышцы-сгибатели развиты значительно лучше, чем разгибатели. В этом возрасте особенно хорошо развиты мышцы, обеспечивающие сгибание в локтевом суставе, и сгибатели кисти. Ребенок 3 лет может некоторое время удерживать тело на весу.
В период с 3 до 6 лет формируются три типа мышечных волокон, которые отличаются метаболизмом и сократительными свойствами. Возрастают сила и быстрота движений, в беге появляется фаза полета, увеличиваются ловкость и гибкость. В конце полуростового скачка созревают нервные центры, управляющие мышечной координацией. В это время происходит дальнейшее развитие мышц рук и формируются тонкие координационные способности (способность к письму).
К 5 годам более интенсивно развиваются разгибатели и увеличивается их тонус, что свойственно взрослому человеку.
В дошкольном возрасте число миофибрилл в мышечном волокне увеличивается в 15—20 раз. Во всех мышцах интенсивно растут сухожилия, продолжает разрастаться соединительная ткань. Для ребенка 3—6 лет характерны генерализованные физиологические реакции, т.е. на слабые и внешние воздействия организм реагирует активацией различных физиологических систем. Этот способ неэкономичен, сопровождается быстрым исчерпыванием резервов и не может обеспечивать нормальное функционирование в течение длительного времени. Таким образом, в организме нет функциональных возможностей для длительного поддержания устойчивых состояний, что проявляется быстрым утомлением при физических нагрузках. Ребенок 6-7 лет способен выдерживать небольшую физическую нагрузку не более 5—7 мин. Еще менее устойчивы дети этого возраста к статическим физическим нагрузкам.
В младшем школьном возрасте скелетные мышцы ребенка существенно меняются, обеспечивая высокую подвижность и неутомляемость. Во всех органах и системах происходят морфофункциональные преобразования, создающие благоприятные условия для осуществления больших объемов мышечной работы. Только к этому возрасту морфо- функциональное развитие мышц обеспечивает длительное поддержание работоспособности. Динамика работоспособности в младшем школьном возрасте отражает повышающуюся надежность функционирования организма ребенка. Объем выполняемой работы у детей 7-10 лет увеличивается в 4 раза. Дети в этом возрасте уже в состоянии длительно, устойчиво поддерживать функциональную активность. Младший школьный возраст сенситивен для формирования физической целенаправленной деятельности. На возраст 8-9 лет приходится максимум игровой двигательной активности.
В подростковом периоде скелетные мышцы конечностей интенсивно растут, но строение мышечных волокон не меняется. В это время энергетический обмен в клетках становится более напряженным и менее устойчивым. Следствием этого является снижение мышечной работоспособности, возможности длительно поддерживать постоянный уровень функциональной активности и выносливости. В дальнейшем благодаря изменениям в функционировании кардиореспираторной системы увеличивается кислородное обеспечение сократительной активности скелетных мышц, в результате чего мышцы вступают 3.12. Развитие мышечной системы в онтогенезе
в период пубертатных дифференцировок, сопровождающихся изменением метаболического профиля мышечных волокон. В это время происходит увеличение размера и количества митохондрий, активности окислительных ферментов мышечных волокон, что необходимо для дальнейшего роста и развития мышц. Отмечается возрастание физических возможностей подростков при выполнении циклической работы.
В конце периода полового созревания под влиянием половых гормонов (тестостерона) развиваются мышечные волокна. Начинают быстро увеличиваться в поперечнике белые волокна, обладающие мощным сократительным аппаратом, количество волокон другого типа остается неизменным. В этом возрасте по составу скелетных мышц можно выявить потенциальных чемпионов, так как свойства мышц определяются в значительной мере генетическим фактором. Созревание быстрых мышечных волокон и нервных спинальных центров, управляющих их сокращением, в этом возрасте уменьшает время двигательных реакций, позволяет совершенствовать силу, ловкость и другие проявления координации движений. Исчезает угловатость движений, формируется их пластический рисунок. В юношеском возрасте значительно возрастает работоспособность. Юноша может выполнить объем работы в 20-30 раз больший, чем ребенок 9—10 лет. Такое увеличение работоспособности связано не только со структурными изменениями мышц, но и с оптимизацией гормональных и нервных регуляторных процессов. В 15—18 лет продолжается рост поперечника мышечных волокон. Развитие сосудистой системы и иннервации мышцы продолжается до 25-30 лет.
9. Нервно-мышечная система и передача
Понять принципы работы системы управления невозможно, не зная особенностей строения объекта управления. Применительно к движениям животных и человека объектом управления является опорно-двигательный аппарат. Своеобразие скелетно-мышечной системы заключается в том, что она состоит из большого количества звеньев, подвижно соединённых в суставах, которые допускают поворот одного звена относительно другого. Суставы могут позволять звеньям поворачиваться относительно одной, двух или трёх осей, т.е. обладать одной, двумя или тремя степенями свободы. Общее число степеней свободы скелета человека превышает 200.
Скелетные мышцы представляют собой очень своеобразные двигатели, которые преобразуют химическую энергию непосредственно в механическую работу и теплоту. В связи с особенностями молекулярных механизмов сокращения, которые сейчас довольно хорошо известны, развитие силы автоматически сопровождается изменениями упругости и вязкости мышечного волокна. Кроме того, напряжение волокна зависит от его длины (угла в суставе) и от скорости его удлинения или укорочения. Как же нервная система управляет мышцей? Один двигательный нейрон (мотонейрон) иннервирует не всю мышцу, а лишь небольшую часть составляющих её волокон. Эти волокна не обязательно соседствуют друг с другом, они рассредоточены по мышце и между ними, как правило, расположены волокна, управляемые другими мотонейронами. Мотонейрон и группа иннервируемых им мышечных волокон образуют двигательную единицу (ДЕ).
В ДЕ может входить от 10–15 (в наружных глазных мышцах) до многих сот мышечных волокон в крупных мышцах конечностей. Мелкие мышцы кисти могут насчитывать всего 30–40 ДЕ, а в двуглавой мышце плеча более 700 ДЕ. Силу мышцы можно увеличивать двумя способами: повышением частоты нервных импульсов, поступающих к каждой из ДЕ, и вовлечением новых двигательных единиц (рекрутированием). Двигательные единицы одной мышцы неодинаковы. В зависимости от скорости сокращения и устойчивости к утомлению различают медленные ( S) и быстрые ( F) двигательные единицы, которые, в свою очередь, подразделяются на устойчивые к утомлению ( FR) и быстроутомляемые ( FF). Порядок рекрутирования ДЕ в обычных условиях определяется размерами их мотонейронов. Первыми вовлекаются мотонейроны меньших размеров, т.е. активируются медленные ДЕ, развивающие небольшую силу. При увеличении уровня возбуждения рекрутируются быстрые ДЕ, развивающие большую силу. Всё это даёт возможность очень точной градации двигательного ответа, но одновременно усложняет управление.
10. Потенциал действия и покоя
1 Потенциал покоя
устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7— 11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов; натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.
Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих каналов (их называют еще насосными каналами или ионным насосом), постоянно потребляющих энергию, в клетке создается разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая — примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около -70мВ относительно внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли — проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка —70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя·». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.
2. Потенциал действия
Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия. Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов — натрия и калия — имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.
Ответим на вопрос: как ионные каналы открываются и закрываются? В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка —70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить
поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается.
Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется потенциалзависимым. Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту. Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т. е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал —70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ. Мы говорим «около», «примерно» потому, что у клеток разного размера и типов этот потенциал может несколько отличаться, что связано с формой этих клеток (например, количеством отростков), а также с особенностями их мембран.
Все изложенное выше можно формально описать следующим образом. В покое клетка ведет себя как «калиевый электрод», а при возбуждении — как «натриевый электрод». Однако после того как потенциал на мембране достигнет своего максимального значения +55 мВ, натриевый ионный канал со стороны, обращенной в цитоплазму, закупоривается специальной белковой молекулой. Это так называемая «натриевая инактивация» (см. рис. 2.6); она наступает примерно через 0,5-1 мс и не зависит от потенциала на мембране. Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию — состоянию покоя, необходимо, чтобы из клетки выходил ток положительных частиц. Такими частицами в нейронах являются ионы калия. Они начинают выходить через открытые калиевые каналы. Вспомните, что в клетке в состоянии покоя накапливаются ионы калия, поэтому при открывании калиевых каналов эти ионы покидают нейрон, возвращая мембранный потенциал к исходному уровню (уровню покоя). В результате этих процессов мембрана нейрона возвращается к состоянию покоя (—70 мВ) и нейрон готовится к следующему акту возбуждения.
Таким образом, выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около 1/1000 с (1 мс).
Подобные потенциалы действия могут возникать и в других клетках, назначение которых — возбуждаться и передавать это возбуждение другим клеткам. Например, сердечная мышца имеет в своем составе специальные мышечные волокна, обеспечивающие бесперебойную работу сердца в автоматическом режиме. В этих клетках также генерируются потенциалы действия. Однако они имеют затянутую, почти плоскую вершину, и длительность такого потенциала действия может затянуться до нескольких сот миллисекунд (сравните с 1 мс у нейрона). Такой характер потенциала действия мышечной клетки сердца физиологически оправдан, так как возбуждение сердечной мышцы должно быть длительным, чтобы кровь успела покинуть желудочек. С чем же связан такой затянутый потенциал действия у этого типа клетки? Оказалось, в мембране этих клеток натриевые ионные каналы не так быстро закрываются, как в нейронах, т. е. натриевая инактивация затянута.
Как ясно из этого описания, возбуждение (потенциал действия) нейрона сменяется так называемым «покоем». Однако никакого покоя в этот период нет. Как уже указывалось выше, в мембране есть еще и насосные каналы, количество которых примерно в 10 раз больше ионных, и они постоянно работают, откачивая из цитоплазмы излишек ионов натрия и закачивая туда недостающие ионы калия. Благодаря неустанной работе этих каналов нейрон всегда готов к возбуждению.
Описанный выше механизм возбуждения клетки (конечно, далеко не все клетки нашего организма способны возбуждаться) в основных чертах одинаков не только в нейронах и мышечных клетках человека, но и в аналогичных клетках других организмов. Например, в нейронах моллюсков, червей, крыс и обезьян при возбуждении происходят описанные выше последовательности событий. Более того, конструкция мембран, включая каналы, также примерно одинакова у всех организмов Земли.
Как уже указывалось, каналы представляют собой белковые молекулы, «прошивающие» мембрану (одна часть молекулы находится в цитоплазме, а другая — во внеклеточной среде). Интересно, что эти белковые молекулы, образующие ионный или насосный каналы, не вечны, а постоянно заменяются на новые (примерно каждые несколько часов). Все это свидетельствует об очень большой динамичности структуры нейрона.
Нейрон способен к возбуждению, которое состоит в том, что мембрана нейрона в состоянии покоя имеет потенциал порядка —70мВ (отрицательность β цитоплазме), а β состоянии возбуждения приобретает потенциал +55 мВ. Таким образом, абсолютная величина потенциала действия — около 125 мВ. Длительность потенциала действия нейрона составляет всего около 1 мс (1/1000 с).
Далее это возбуждение (потенциал действия) должно передаться другому нейрону или какой-то другой клетке, например мышечной, железистой и др.
Возбуждение в виде потенциала действия покидает тело нейрона по его отростку, который называется аксоном. Аксоны отдельных нейронов обычно объединяются в пучки — нервы, а сами аксоны в этих пучках называются нервными волокнами. Природа позаботилась, чтобы волокна максимально хорошо справлялись с функцией проведения возбуждения в виде потенциалов действия. Для этой цели отдельные нервные волокна (аксоны отдельных нейронов) имеют специальные чехлы, выполненные из хорошего электрического изолятора. Чехол прерывается примерно через каждые 0,5-1,5 мм; это связано с тем, что отдельные участки чехла образуются в результате того, что специальные клетки в очень ранний период развития организма (в основном еще до рождения) обволакивают небольшие участки аксона. В периферических нервах миелин образуется клетками, которые получили название шванновских, а в головном мозге это происходит за счет клеток олигодендроглии. Этот процесс называется миелинизацией, так как в результате образуется чехол из вещества миелина, примерно на 2/3 состоящего из жира и являющегося хорошим электрическим изолятором. Исследователи придают очень большое значение процессу миелинизации в развитии мозга.
Известно, что у новорожденного ребенка миелинизировано примерно 2/3 волокон головного мозга. Примерно к 12 годам завершается следующий этап миелинизации. Это соответствует тому, что у ребенка уже формируется функция внимания, он достаточно хорошо владеет собой. Вместе с тем полностью процесс миелинизации заканчивается только при завершении полового созревания. Таким образом, процесс миелинизации является показателем созревания ряда психических функций. В то же время известны заболевания нервной системы человека, которые связаны с демиелинизацией нервных волокон, что сопровождается тяжелыми страданиями. К самым известным относится рассеянный склероз. Это заболевание развивается незаметно и очень медленно, последствием является паралич движения.
Почему же так важна миелинизация нервных волокон? Оказывается, миелинизированные волокна в сотни раз быстрее проводят
возбуждение, чем немиелинизированные, т. е. нейронные сети нашего мозга могут работать с большей скоростью, а значит, более эффективно. Поэтому не миелинизируются в нашем организме только самые тонкие волокна (менее 1 мкм в диаметре), которые проводят возбуждение к медленно работающим органам — кишечнику, мочевому пузырю и др. Как правило, не миелинизируются волокна, проводящие информацию о боли и температуре.
Как происходит распространение возбуждения по нервному волокну? Вначале разберем случай немиелинизированного нервного волокна. Возбужденный участок аксона характеризуется тем, что мембрана, обращенная к аксоплазме, заряжается положительно относительно экстраклеточной среды. Невозбужденные (покоящиеся) участки мембраны волокна отрицательны внутри. Между возбужденным и невозбужденным участками мембраны возникает разность потенциалов и начинает протекать ток. На рисунке это отражено линиями тока, пересекающими мембрану со стороны аксоплазмы, — выходящий ток, который деполяризует соседний невозбуждениый участок волокна. Возбуждение движется по волокну только в одном направлении и не может пойти в другую сторону, так как после возбуждения участка волокна в нем наступает рефрактерность — зона не возбудимости. Нам уже известно, что деполяризация приводит к открыванию потенциалзависимых натриевых каналов и в соседнем участке мембраны развивается потенциал действия. Затем натриевый канал инактивируется и закрывается, что и приводит к зоне невозбудимости волокна. Эта последовательность событий повторяется для каждого соседнего участка волокна. На каждое такое возбуждение тратится определенное время. Специальные исследования показали, что скорость проведения возбуждения немиелинизированных волокон пропорциональна их диаметру: чем больше диаметр, тем выше скорость движения импульсов. Например, немиелинизированные волокна, проводящие возбуждение со скоростью 100—120 м/с, должны иметь диаметр около 1000 мкм (1 мм).
У млекопитающих животных природа сохранила немиелинизированными только те волокна, которые проводят возбуждение о боли, температуре, управляют медленно работающими внутренними органами — мочевым пузырем, кишечником и пр. Практически все нервные волокна в центральной нервной системе человека имеют миелиновые чехлы. Если вдоль волокна, покрытого миелином, регистрировать прохождение возбуждения, то потенциал действия возникает только в перехватах Ранвье. Оказывается, миелин, являясь хорошим электрическим изолятором, не пропускает выхода линий тока от предшествующего возбужденного участка. Выход тока в этом случае возможен только через те участки мембраны, которые находятся на стыке между двумя участками миелина. Напомним, что каждый участок образован только одной клеткой, поэтому это стыки между двумя клетками, образующими соседние участки миелиновой оболочки. Мембрана аксона между двумя соседними миелиновыми чехлами оказывается не покрытой миелином (так называемый перехват Ранвье). Благодаря такому устройству мембрана волокна возбуждается только в местах перехватов Ранвье. Вследствие этого потенциал действия (возбуждение) как бы перескакивает через участки изолированной мембраны. Другими словами, возбуждение движется скачками от перехвата к перехвату. Это похоже на те волшебные сапоги-скороходы, которые надевал кот в известной сказке, мгновенно переносясь из одного места в другое.
11. Синапсы. Нейромедиаторы.
Строение и виды синапсов. Механизм их функционирования. Механизм их функционирования. Роль медиаторов.
Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.
Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).
Все структуры, обеспечивающие передачу сигнала с одной нервной структуры на другую – синапсы.
Значение – передает нервные импульсы с одного нейрона на другой => обеспечивает передачу возбуждения по нервному волокну (распространение сигнала).
Большое количество синапсов обеспечивает большую площадь для передачи информации.
Виды синапсов:
I. по расположению.
1. Аксодендритические синапсы - на дендритах и теле нейронов. Передатчики - аксоны.
2. Аксосоматические синапсы - между аксоном и телом нейрона.
3. Аксошипиковые синапсы - на шипиках (выросты на дендритах. С их изменением меняется работа нейронов).
4. Аксоаксональные синапсы - между аксонами нейронов.
5. Дендродендритические синапсы - между дендритами нейронов.
6. Сомосоматические синапсы - между телами нейронов.
II. по способу передачи сигналов.
1. Химические синапсы – возбуждение передается посредством медиаторов.
2. Электрические синапсы - возбуждение передается посредством ионов.
3. Смешанные синапсы - возбуждение передается посредством и медиаторов, и ионов.
III. по анатомо-гистологическому принципу.
1. Нейросекреторные.
2. Нервно-мышечные.
3. Межнейронные.
IV. по нейрохимическому принципу.
1. Адренергические – медиатор норадреналин.
2. Холинэргические – медиатор ацетилхолин.
V.по функциональному принципу.
1. Возбуждающие.
2. Тормозные.
Между окончаниями двигательного нейрона и мышечным волокном существует нервно-мышечное соединение, отличающееся по строению, но сходное в функциональном отношении с синаптическими контактами.
Строение синапса:
1. Пресинаптическая мембрана - принадлежит нейрону, ОТ которого передается сигнал.
2. Синаптическая щель, заполненная жидкостью с высоким содержанием ионов Са.
3. Постсинаптическая мембрана - принадлежит клеткам, НА которые передается сигнал.
Между нейронами всегда существует перерыв, заполненный межтканевой жидкостью.
В зависимости от плотности мембран, выделяют:
- симметричные (с одинаковой плотностью мембран)
- асимметричные (плотность одной из мембран выше)
Пресинаптическая мембрана покрывает расширение аксона передающего нейрона.
Расширение - синаптическая пуговка/синаптическая бляшка.
На бляшке - синаптические пузырьки (везикуль).
С внутренней стороны пресинаптической мембраны – белковая/гексогональная решетка (необходима для высвобождения медиатора), в которой находится белок - нейрин.Заполнена синаптическими пузырьками, которые содержат медиатор – специальное вещество, участвующее в передаче сигналов.
В состав мембраны пузырьков входит - стенин (белок).
Пузырьки содержат молекулы медиатора (внутри) - вещество, необходимое для передачи сигнала.
Постсинаптическая мембрана покрывает эффекторную клетку. Содержит белковые молекулы, избирательно чувствительные к медиатору данного синапса, что обеспечивает взаимодействие.
Эти молекулы – часть каналов постсинаптической мембраны + ферменты (много), способные разрушать связь медиатора с рецепторами.
Рецепторы постсинаптической мембраны.
Постсинаптическая мембрана содержит рецепторы, обладающие родством с медиатором данного синапса.
Между ними находится снаптическая щель. Она заполнена межклеточной жидкостью, имеющей большое количество кальция. Обладает рядом структурных особенностей – содержит белковые молекулы, чувствительные к медиатору, осуществляющему передачу сигналов.
Для каждого синапса характерна:
1. Химическая специфичность (их делят по типу медиаторов).
2. Одностороннее проведение возбуждения (от пре- к постсинаптической мембране).
3. Синаптическая задержка проведения возбуждения (5-20 миллисек).
4. Высокая избирательная чувствительность к химическим веществам.
Принципы работы синапса.
Передача возбуждения в синапсе представляет собой сложный процесс, который проходит в несколько стадий:
1. Синтез медиатора.
2. Секреция медиатора.
3. Взаимодействие медиатора с рецепторами постсинаптической мембраны.
4. Инактивация (полная утрата активности) медиатора.
При распространении сигнал по аксону достигает пресинаптической мембраны и вызывает ее перезарядку. Во время ПД пресинаптическая мембрана становится проницаемой для ионов Na и Ca, которые входят внутрь синаптической бляшки из синаптической щели, где способствуют замыканию связи между белками гексогональнойрешетки и синаптических пузырьков. Это приводит к выходу медиатора, его проникновению в синаптическую щель и диффузии его на постсинаптическую мембрану.
Достигнув ее, он взаимодействует с ее рецепторами, в результате чего открываются ионные каналы и осуществляется движение ионов по градиенту концентрации.
В результате формируется постсинаптический потенциал на постсинаптической мембране. Связь медиатора с рецепторами разрывается , 30-70% медиатора возвращается, часть разрушается. Синапс готов воспринимать новые медиаторы.
Развитие возбуждающих и тормозных постсинаптических потенциалов.
В возбуждающих синапсах под действием ацетилхолина открываются специфические натриевые (натрий входит в клетку) и калиевые (калий выходит из клетки) каналы, что вызывает деполяризацию мембраны, или возбудждающий постсинаптический потенциал (ВПСП).
В тормозных синапсах высвобождение медиатора повышает проницаемость мембраны для ионов калия и хлора, которые вызывают гиперполяризацию мембраны, называемую тормозным постсинаптическим потенциалом (ТПСП).
ПД впервые возникает в области аксонного холмика нейрона – начального сегмента аксона в месте его отхождения от тела клетки. Аксонный холмик – это самый возбудимый участок нейрона с наиболее низким порогом.
Для того, чтобы в постсинаптическом нейроне возник нервный импульс, необходимо деполяризовать мембрану аксонного холмика на величину от -10 до -25 мВ.
ВПСП и ТПСП зависит от природы медиатора и специфики постсинаптической клетки.
Интеграция синаптических процессов на нейроне, ее значение.
Постсинаптический нейрон может получать сигналы от большего количества пресинаптических нейронов, которые он интегрирует и выдает ответ.
В некоторых синапсах имеет место облегчение, состоящее в том, что после каждого стимула синапс становится более чувствительным к следующему синапсу.
ВПСП, генерируемый в одном возбуждаемом синапсе, приводит лишь к незначительному колебанию мембранного потенциала в аксоном холмике (1 мВ или <). Это связано с тем, что ВПСП возникает в отдалении от аксонного холмика, а амплитуда его мала.
ПД может появиться лишь в случае повторных разрядов в одной синаптической бляшке (временная суммация – медиатор высвобождается порциями (квантами), а не в виде отдельных молекул) либо при одновременном возбуждении нескольких окончаний (пространственная суммация).
Отдельные ВПСП, генерируемые при повторных или одновременных разрядах, складываются и образуют суммарный ВПСП.
Если местные деполяризующие токи, возникающие под влиянием суммарного ВПСП, достаточно велики для того, чтобы мембрана аксонного холмика деполяризовалась до порогового уровня, возникает ПД.
ТПСП тормозит генерацию ПД, уменьшая величину суммарного ВПСП.
Возникновение нервного импульса зависит от того, достаточна ли амплитуда суммарного синаптического потенциала, образующегося в результате сложения всех ВПСП и ТПСП, для деполяризации мембраны аксонного холмика до порогового уровня.
Медиаторы.
- (от лат. - посредник) – химические вещества, молекулы которых способны реагировать со специфическими рецепторами клеточной мембраны и изменять ее проницаемость для определенных ионов, вызывая возникновение (генерацию) ПД – активного электрического сигнала.
Выделяясь под влиянием нервных импульсов, медиаторы участвуют в их передаче с нервного окончания на рабочий орган и с одной нервной клетки на другую.
В ЦНС роль медиатора осуществляют – ацетилхолин, норадреналин, дофамин, серотонин, гамма аминомасляная и глутаминовая кислоты, глицин.
Основные медиаторы – ацетилхолин и норадреналин.
Медиаторы сами по себе не обладают возбуждающим и тормозящим действием.
12. Рефлекторный контроль движения. Рефлекторное кольцо и дуга.
Ранее механизм движения описывался в физиологии схемой рефлекторной дуги: стимул – процесс его центральной переработки (возбуждение программ) – реакция. Понятие введено М. Холлом в 1850 г. В настоящее время понятие рефлекторной дуги не полностью отражает механизм осуществления рефлекса, был предложен новый термин — «рефлекторное кольцо».
Считалось, что на этапе обучения движению в двигательных центрах формируется и фиксируется его программа, затем в результате действия стимула она возбуждается, в мышцы идут моторные командные импульсы, и происходит движение. Бернштейн Н.А. установил, что, хотя простое движение (как коленный рефлекс) может произойти в результате прямого проведения моторных команд от центра к периферии, но сложные двигательные акты, решающие какую-то задачу, организуются иначе, поскольку результат сложного движения, кроме управляющих сигналов, зависит от дополнительных факторов.
Функционирование кольца необходимо для большинства движений. Классическая рефлекторная дуга может рассматриваться как частный случай кольца, когда совершаются элементарные кратковременные движения, не нуждающиеся в коррекции (движения рефлекторной природы), или, с точки зрения Бернштейна Н.А., как «разорванное кольцо», абстракция от целостного акта кольцевой регуляции.
Рефлексом называется ответная реакция организма на раздражение внешней или внутренней среды.
Осуществляемая в рефлексе передача нервного возбуждения от рецепторов через центральные отделы нервной системы к эффекторным механизмам совершается по так называемой рефлекторной дуге.
В состав рефлекторной дуги спинномозговых (безусловных) рефлексов входят нейроны: 1) афферентный — передающий возбуждение с периферии к центру, и 2) эфферентный — передающий возбуждение дальше, от центра к периферии (к мышцам и железам)
Условные рефлексы головного мозга осуществляются с помощью более сложной рефлекторной дуги, в которой, помимо афферентного и эфферентного путей, имеется еще третий нейрон — центральный, выполняющий сочетательную функцию.
Следует различать механистическое понимание природы рефлекса, идущее от Декарта, и понятие рефлекса в его диалектико-материалистической сущности, разработанное И. М. Сеченовым и И. П. Павловым.
Декарт рассматривал рефлекс как всегда бессознательное, автоматическое действие организма, вызываемое в нем внешним раздражителем, а сам организм — как автомат, своеобразную рефлекторную машину. Это механистическое понимание рефлекса надолго удержалось в физиологии. Еще в недавнее время выдающийся английский физиолог Ч. С. Шеррингтон (1859—1952) рассматривал рефлекс как машинообразную реакцию, осуществляемую на основе постоянной связи между раздражением и ответом на него. Этому соответствовала и механистическая концепция «жесткой» рефлекторной дуги, якобы состоящей из нервных процессов, протекающих для каждого рефлекса всегда по одним и тем же строго фиксированным неизменным путям, где одни нейроны обязательно связываются со строго определенными другими нейронами, что и приводит к однообразной автоматической двигательной реакции.
Такое механистическое понимание природы рефлекса препятствовало материалистическому анализу сложных (в том числе и со включением психики) форм поведения не только человека, но и животных и вынуждало Шеррингтона при анализе этих форм становиться на позиции дуализма, допускать наличие нематериальных факторов, якобы регулирующих сложные формы поведения животных. «Воробей, взлетающий на дороге при приближении автомобиля,— говорит Шеррингтон,— предвосхищает время», чего не может сделать рефлекторный воробей. Птица, ищущая себе гнездо, имеет прошлое и «будущее», включенное в го, что она делает в настоящий момент». Иными словами, поведение воробья и птицы в этих сложных формах определяется не материальными физиологическими процессами, а некоторыми, в корне
отличными от них, духовными факторами.
В противоположность Декарту и его последователям, И. М. Сеченов впервые выдвинул понятие рефлекса как сложной целесообразной нервной деятельности животного, лежащей в основе не только безусловных инстинктов, но всех, даже самых сложных форм поведения, в том числе и сознательной деятельности человека.
Экспериментальные исследования И. П. Павлова и его школы убедительно показали полную научную несостоятельность декартовского учения о рефлексе и вытекающего из него механистического понятия рефлекторной дуги, как состоящей из строго фиксированных нервных процессов. Этими исследованиями вскрыты сложные закономерности и многообразие рефлексов, участие в их осуществлении не каких-либо отдельных точно фиксированных нейронов, а в целом всего высшего отдела нервной системы животного.
В связи с этим утратило прежний механистический характер и понятие рефлекторной дуги. Это понятие по-прежнему сохраняет основополагающее значение для объяснения сущности рефлекса, как сложного нервного процесса, вызываемого внешним раздражением и заканчивающегося целесообразной реакцией организма. Однако сама эта реакция понимается И. П. Павловым не как механическое переключение вызванного внешним раздражением нервного возбуждения на строго соответствующую ему определенную двигательную или секреторную реакцию, а как реакция, в значительной степени обусловленная прошлым опытом животного и образовавшимся в результате этого опыта усложнением нервной деятельности.
В связи с этим по-новому, диалектически понимается структура и характер основных звеньев рефлекторной дуги: ее афферентный отдел не механически рецепирует внешнее раздражение, а избирательно, в соответствии с потребностями организма и накопленной в его нервной системе информацией: необыкновенно усложняется центральный отдел рефлекторной дуги, включая в себя не один строго фиксированный, а многие сочетательные нейроны и в связи с этим вовлекая в рефлекторный процесс каждый раз в связи с меняющейся ситуацией различные отделы головного мозга животного; наконец, ее эффекторный отдел понимается не как однозначный, трафаретный, точно и навсегда определенный характером и силой раздражителя, а как осуществляющий целесообразную реакцию, меняющиеся средства которой всякий раз обусловливаются сложной работой центральных отделов мозга. Например, даже такой относительно простой рефлекс, как защитная реакция организма в ответ на болевое раздражение выполняется по-разному, с привлечением к этому различных мышечных групп в зависимости от того, в каком положении находится обороняющееся животное (стоит, лежит, сидит и т. п.).
13. Правила и условия выработки условных рефлексов
Правила образования условных рефлексов
Для выработки условного рефлекса необходимо:
1) наличие двух раздражителей один из которых безусловный (пища болевой раздражитель и др.) вызывающий безусловно-рефлекторную реакцию а другой - условный (сигнальный) сигнализирующий о предстоящем безусловном раздражении (свет звук вид пищи и т.д.);
2) многократное сочетание условного и безусловного раздражителей (хотя возможно образование условного рефлекса при их однократном сочетании);
3) условный раздражитель должен предшествовать действию безусловного раздражителя;
4) в качестве условного раздражителя может быть использован любой раздражитель внешней или внутренней среды который должен быть по возможности индифферентным не вызывать оборонительной реакции не обладать чрезмерной силой и способен привлекать внимание;
5) безусловный раздражитель должен быть достаточно сильным в противном случае временная связь не сформируется;
6) возбуждение от безусловного раздражителя должно быть более сильным чем от условного;
7) необходимо устранить посторонние раздражители так как они могут вызывать торможение условного рефлекса;
8) животное у которого вырабатывается условный рефлекс должно быть здоровым;
9) при выработке условного рефлекса должна быть выражена мотивация например при выработке пищевого слюноотделительного рефлекса животное должно быть голодным у сытого - этот рефлекс не вырабатывается.
Условные рефлексы хорошо образуются только при определенных условиях. Главнейшими из них являются:
1) повторное сочетание действия ранее индифферентного условного раздражителя с действием подкрепляющего безусловного или ранее хорошо выработанного условного раздражителя;
2) некоторое предшествование во времени действия индифферентного агента действию подкрепляющего раздражителя;
3) бодрое состояние организма;
4) отсутствие других видов активной деятельности;
5) достаточная степень возбудимости безусловного или хорошо закрепленного условного подкрепляющего раздражителя;
6) надпороговая интенсивность условного раздражителя.
14. Спинальные рефлексы. Моносинаптические и полисинаптические рефлексы.
Рефлекс – стереотипная реакция организма на раздражитель, проходящая с участием нервной системы.
К спинальным рефлексам относятся:
- вегетативные рефлексы – мочеиспускательный, дефекационный, потоотделительный, сосудистые рефлексы и др.;
- двигательные рефлексы – сгибательные и разгибательные рефлексы сегментарного характера;
- проприоцептивные рефлексы – возникают при раздражении рецепторов со скелетных мышц и участвуют в формировании акта ходьбы и регуляции мышечного тонуса. В группу органных рефлексов входят рефлексы конечностей, брюшные, яичковый и анальный рефлекс. В свою очередь рефлексы конечностей могут быть сгибательные, разгибательные, ритмические и познотонические;
Сгибательные и разгибательные рефлексы в свою очередь делятся на фазные и тонические:
- фазные рефлексы – это однократное сгибание и разгибание конечности при однократном раздражении кожи или проприоцепторов. Сгибательные фазные рефлексы – это локтевой, подошвенный, ахиллов и т.д., разгибательный фазный рефлекс – это коленный;
- тонические сгибательные и разгибательные рефлексы возникают при длительном сокращении или расслаблении мышц и направлены на поддержание позы.
Рефлекторной дугой называют путь, по которому сигналы от рецептора идут к исполнительному органу.
По степени сложности нейронной организации рефлекторных дуг различают моносинаптические и полисинаптические.
Моносинаптические рефлекторные дуги – дуги которых состоят из афферентного и эфферентного нейронов (например, коленный).
Полисинаптические рефлекторные дуги – дуги которых содержат также один или несколько промежуточных нейронов и имеют два или несколько синаптических переключений. Такие рефлекторные дуги позволяют организму осуществлять автоматические непроизвольные реакции, необходимые для приспособления к изменениям внешней среды (например, зрачковый рефлекс или сохранение равновесия при передвижении) и к изменениям в самом организме (регуляция частоты дыхания, кровяного давления и т.п.).
15. Проприорецепторные механизмы
Для успешной реализации движений необходимо, чтобы управляющие этими движениями центры в любой момент времени располагали информацией о положении звеньев тела в пространстве и о том, как протекает движение. В то же время движения являются мощным средством получения информации об окружающем мире. Некоторые виды сенсорной информации, например осязательная (гаптическое чувство) и зрительная, вообще могут быть получены только посредством определённых движений (соответственно, кисти и пальцев или глаз). Таким образом, связь между сенсорикой и моторикой очень тесна. По образному выражению Н.А. Бернштейна, «в организме все моторы осенсорены, а сенсоры омоторены».
Особое значение для управления движениями имеют сигналы двух типов мышечных рецепторов – мышечных веретён и сухожильных органов Гольджи. В каждой мышце человека можно встретить группы более тонких и коротких, чем остальные, мышечных волокон, заключённых в соединительнотканную капсулу длиной в несколько миллиметров и толщиной в несколько десятков микрон. Из-за своей формы эти образования получили название «мышечные веретена», а заключённые в капсулу мышечные волокна называются «интрафузальными» (внутриверетенными).
Мышечные веретена – это сложные образования, имеющие как афферентную, так и эфферентную иннервацию. Толстое афферентное волокно группы Iа, проникая внутрь капсулы веретена, ветвится, и его окончания обвивают в виде спиралей центральную часть интрафузальных волокон. Эти окончания называют первичными. Многие веретена иннервируются также одним или несколькими волокнами группы II, а их окончания располагаются к периферии от первичных окончаний и называются вторичными окончаниями.
Оба типа окончаний механочувствительны и активируются при растяжении мышцы. При этом частота импульсов, поступающих в мозг от первичных окончаний, зависит от амплитуды и скорости растяжения, а вторичные окончания чувстительны лишь к величине растяжения. Чувствительность афферентов Iа и II может регулироваться путём изменения жёсткости интрафузальных мышечных волокон. Такие изменения происходят под влиянием тонких (группа g) эфферентных двигательных волокон, идущих к веретену и являющихся аксонами g-мотонейронов. Различают два вида g- волокон, которые могут изменять чувствительность афферентов к величине растяжения и к скорости независимо (соответственно g-статические и g-динамические волокна).
В отличие от веретён, расположенных параллельно мышечным волокнам, сухожильные органы Гольджи располагаются последовательно в месте перехода мышечных волокон в сухожилие. Эти рецепторы являются специализированными окончаниями толстых афферентных волокон первой группы (Ib), и частота их разрядов пропорциональна развиваемой мышцей силе.
В суставных капсулах, внутрисуставных и внесуставных связках имеются механорецепторы типа Руффини, активирующиеся при движениях в суставе, главным образом вблизи его крайних положений. В мышце также очень много свободных нервных окончаний (группы III и IV). Все перечисленные ранее типы рецепторов обеспечивают так называемую «проприоцептивную чувствительность», снабжая ЦНС информацией о состоянии опорно-двигательного аппарата. Информацию о состоянии собственного тела могут давать также и другие виды рецепторов, формально не относящихся к проприоцептивным (рецепторы глубокой чувствительности, кожные рецепторы в области суставов и т.д.).
16. Лимбическая система
Лимбическая система — совокупность нервных структур и их связей, расположенных в медиобазальной части больших полушарий, участвующих в управлении вегетативными функциями и эмоциональным, инстинктивным поведением, а также оказывающих влияние на смену фаз сна и бодрствования.
К лимбической системе относится наиболее древняя часть коры головного мозга, расположенная на внутренней стороне больших полушарий. К ней относятся: гиппокамп, поясная извилина, миндалевидные ядра, грушевидная извилина. Лимбические образования относятся к высшим интегративным центрам регуляции вегетативных функций организма. Нейроны лимбической системы получают импульсы с коры, подкорковых ядер, таламуса, гипоталамуса, ретикулярной формации и всех внутренних органов. Характерным свойством лимбической системы является наличие хорошо выраженных кольцевых нейронных связей, объединяющих различные ее структуры. Среди структур, ответственных за память и обучение, главную роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность важна для перехода кратковременной памяти в долговременную. Лимбическая система участвует в афферентном синтезе, в контроле электрической активности мозга, регулирует процессы обмена веществ и обеспечивает ряд вегетативных реакций. Раздражение различных участков этой системы у животного сопровождается проявлениями оборонительного поведения и изменениями деятельности внутренних органов. Лимбическая система участвует и в формировании поведеческих реакций у животных. В ней находится корковый отдел обонятельного анализатора.
Структурно-функциональная организация лимбической системы
Большой круг Пейпеса:
гиппокамп;
свод;
мамиллярные тела;
мамиллярно-таламический пучок Викд'Азира;
таламус;
поясная извилина.
Малый круг Наута:
миндалина;
конечная полоска;
гипоталамус;
перегородка.
Лимбическая система состоит из филогенетически старых отделов переднего мозга. В названии (limbus — край) отражена особенность ее расположения в виде кольца между новой корой и конечной частью ствола мозга. К лимбической системе относят ряд функционально объединенных структур среднего, промежуточного и конечного мозга. Это поясная, парагиппокампальная и зубчатая извилины, гиппокамп, обонятельная луковица, обонятельный тракт и прилежащие участки коры. Кроме того, к лимбической системе относят миндалину, переднее и септальное таламические ядра, гипоталамус и мамиллярные тела.
Лимбическая система имеет множественные афферентные и эфферентные связи с другими структурами мозга. Ее структуры взаимодействуют друг с другом. Функции лимбической системы реализуются на основе протекающих в ней интегративных процессов. В то же время отдельным структурам лимбической системы присущи более или менее очерченные функции.
Основные функции лимбической системы:
Эмоционально-мотивационное поведение (при страхе, агрессии, голоде, жажде), которое может сопровождаться эмоционально окрашенными двигательными реакциями
Участие в организации сложных форм поведения, таких как инстинкты (пищевые, половые, оборонительные)
Участие в ориентировочных рефлексах: реакция настороженности, внимания
Участие в формировании памяти и динамике обучения (выработка индивидуального поведенческого опыта)
Регуляция биологических ритмов, в частности смен фаз сна и бодрствования
Участие в поддержании гомеостаза путем регуляции вегетативных функций
Нейроны поясной извилины получают афферентные сигналы из ассоциативных областей лобной, теменной и височной коры. Аксоны ее эфферентных нейронов следуют к нейронам ассоциативной коры лобной доли, гиппокампа, септальных ядер, миндалины, которые связаны с гипоталамусом.
Одной из функций поясной извилины является ее участие в формировании поведенческих реакций. Так, при стимуляции ее передней части у животных возникает агрессивное поведение, а после двухстороннего удаления животные становятся тихими, покорными, асоциальными — теряют интерес к другим особям группы, не пытаясь устанавливать с ними контакт.
Поясная извилина может оказывать регуляторные влияния на функции внутренних органов и поперечно-полосатой мускулатуры. Ее электрическая стимуляция сопровождается уменьшением частоты дыхания, сокращений сердца, снижением давления крови, усилением моторики и секреции желудочно-кишечного тракта, расширением зрачка, снижением тонуса мышц.
Не исключено, что влияния поясной извилины на поведение животных и функции внутренних органов являются непрямыми и опосредованы связями поясной извилины через кору лобной доли, гиппокамп, миндалину и септальные ядра с гипоталамусом и структурами ствола мозга.
Возможно, что поясная извилина имеет отношение к формированию болевых ощущений. У людей, которым по медицинским показаниям было проведено рассечение поясной извилины, уменьшалось чувство боли.
Установлено, что нейронные сети передней части поясной извилины участвуют в работе мозгового детектора ошибок. Его функцией является выявление ошибочных действий, ход выполнения которых отклоняется от программы их исполнения и действий, при завершении которых не были достигнуты параметры конечных результатов. Сигналы детектора ошибок используются для запуска механизмов коррекции ошибочных действий.
Миндалина расположена в височной доле мозга, и ее нейроны формируют несколько подгрупп ядер, нейроны которых взаимодействуют друг с другом и другими структурами мозга. Среди этих ядерных групп кортикомедиальная и базолатеральная подгруппы ядер.
Нейроны кортикомедиальных ядер миндалины получают афферентные сигналы от нейронов обонятельной луковицы, гипоталамуса, ядер таламуса, септальных ядер, вкусовых ядер промежуточного мозга и путей болевой чувствительности моста, по которым к нейронам миндалины поступают сигналы от больших рецептивных полей кожи и внутренних органов. С учетом этих связей предполагают, что кортикомедиальная группа ядер миндалин вовлечена в контроль осуществления вегетативных функций организма.
Нейроны базолатеральных ядер миндалины получают сенсорные сигналы от нейронов таламуса, афферентные сигналы о смысловом (осознаваемом) содержании сигналов от префронтальной коры лобной доли, височной доли мозга и поясной извилины.
Нейроны базолатеральных ядер связаны с таламусом, префронтальной частью коры больших полушарий мозга и вентральной частью полосатого тела базальных ганглиев, поэтому предполагается, что ядра базолатеральной группы миндалин принимают участие в осуществлении функций лобной и височной долей мозга.
Нейроны миндалины посылают эфферентные сигналы по аксонам преимущественно к тем же структурам мозга, от которых они получили афферентные связи. Среди них гипоталамус, медиодорсальное ядро таламуса, префронтальная кора, зрительные области височной коры, гиппокамп, вентральная часть полосатого тела.
О характере функций, выполняемых миндалиной, судят но последствиям ее разрушения или по эффектам ее раздражения у высших животных. Так, двухстороннее разрушение миндалин у обезьян вызывает потерю агрессивности, снижение эмоций и защитных реакций. Обезьяны с удаленными миндалинами держатся в одиночестве, не стремятся вступать в контакт с другими животными. При заболеваниях миндалин наблюдается разобщение между эмоциями и эмоциональными реакциями. Больные могут испытывать и выражать большую обеспокоенность по какому-либо поводу, но в это время частота сокращений сердца, давление крови и другие вегетативные реакции у них не изменены. Предполагается, что удаление миндалин, сопровождаемое разрывом ее связей с корой, ведет к нарушению в коре процессов нормальной интеграции смысловой и эмоциональной составляющих эфферентных сигналов.
Электрическая стимуляция миндалин сопровождается развитием тревоги, галлюцинаций, переживанием ранее происходивших событий, а также реакциями СНС и АНС. Характер этих реакций зависит от локализации раздражения. При раздражении ядер корково-медиальной группы превалируют реакции со стороны органов пищеварения: саливация, жевательные движения, опорожнение кишечника, мочеиспускание, а при раздражении ядер базолатеральной группы — реакции настораживания, подъема головы, расширения зрачка, поиска. При сильном раздражении у животных могут развиться состояния ярости или, наоборот, испуга.
В формировании эмоций важная роль принадлежит наличию замкнутых кругов циркуляции нервных импульсов между образованиями лимбической системы. Особую роль в этом играет так называемый лимбический круг Пайпеца (гиппокамп — свод — гипоталамус — мамиллярные тела — таламус — поясная извилина — парагиппокампальная извилина — гиппокамп). Циркулирующие по этой круговой нейронной цепи потоки нервных импульсов иногда называют «потоком эмоций».
Другой круг (миндалина — гипоталамус — средний мозг — миндалина) важен в регуляции агрессивно-оборонительных, сексуальных и пищевых поведенческих реакций и эмоций.
Миндалины являются одной из структур ЦНС, на нейронах которой имеется наибольшая плотность рецепторов половых гормонов, что объясняет одно из изменений в поведении животных после двухстороннего разрушения миндалин — развитие гиперсексуальности.
Экспериментальные данные, полученные на животных, свидетельствуют о том, что одной из важных функций миндалин является их участие в установлении ассоциативных связей между характером раздражителя и его значимостью: ожидание удовольствия (награды) или наказания за выполненные действия. В реализации этой функции участвуют нейронные сети миндалин, вентральной части полосатого тела, таламуса и префронтальной коры.
Гиппокамп вместе с зубчатой извилиной (subiculun) и обонятельной корой образует единую функциональную гиппокампальную структуру лимбической системы, расположенную в медиальной части височной доли мозга. Между составляющими этой структуры имеются многочисленные двухсторонние связи.
Основные афферентные сигналы зубчатая извилина получает от обонятельной коры и посылает их в гиппокамп. В свою очередь обонятельная кора как главные ворота получения афферентных сигналов получает их от различных ассоциативных областей коры больших полушарий, гиппокампальной и поясной извилин. К гиппокампу поступают уже обработанные зрительные сигналы из внестриарных областей коры, слуховые — из височной доли, соматосенсорные — из постцентральной извилины и информация — из полисенсорных ассоциативных областей коры.
К гиппокампальным структурам поступают сигналы и из других областей мозга — ядер ствола, ядра шва, голубоватого пятна. Эти сигналы выполняют преимущественно модуляторную функцию по отношению к активности нейронов гиппокампа, приспосабливая ее к степени внимания и мотиваций, оказывающих решающее значение на процессы запоминания и обучения.
Эфферентные связи гиппокампа организованы так, что они следуют в основном в те области мозга, с которыми гиппокамп связан афферентными связями. Таким образом, эфферентные сигналы гиппокампа следуют главным образом к ассоциативным областям височной и лобной долей мозга. Для выполнения своих функций гиппокампальные структуры нуждаются в постоянном обмене информацией с корой и другими структурами мозга.
Одним из последствий двухстороннего заболевания медиальной части височной доли является развитие амнезии — потери памяти с последующим снижением интеллекта. При этом наиболее грубые нарушения памяти наблюдаются при повреждении всех гиппокампальных структур и менее выраженные — при повреждении только гиппокампа. Из этих наблюдений сделан вывод о том, что гиппокампальные структуры являются частью структур мозга, включая медиальный галамус, холинергические нейронные группы основания лобных долей, миндалины, играющих ключевое значение в механизмах памяти и обучения.
Особую роль в реализации гиппокампом механизмов памяти играет уникальное свойство его нейронов сохранять в течение длительного времени состояние возбуждения и синаптической передачи сигналов после их активации какими-либо воздействиями (это свойство называется посттетанической потенциацией). Посттетаническая потенциация, обеспечивающая длительное циркулирование информационных сигналов но замкнутым нейронным кругам лимбической системы, является одним из ключевых процессов в механизмах формирования долговременной памяти.
Гиппокампальные структуры играют важную роль в усвоении новой информации и сохранении ее в памяти. Информация о более ранних событиях сохраняется в памяти после повреждения этой структуры. При этом гиппокампальные структуры играют роль в механизмах декларативной или конкретной памяти на события и факты. К механизмам недекларативной памяти (память на навыки и лица) в большей степени причастны базальные ганглии, мозжечок, моторные области коры, височная кора.
Таким образом, структуры лимбической системы принимают участие в осуществлении таких сложных функций мозга как поведение, эмоции, обучение, память. Функции мозга организованы так, что чем сложнее функция, тем разветвленное нейронные сети, участвующие в ее организации. Из этого очевидно, что лимбическая система является лишь частью структур центральной нервной системы, имеющих значение в механизмах сложных функций мозга, и вносит свой вклад в их осуществление.
Так, в формировании эмоций как состояний, отражающих паше субъективное отношение к текущим или прошлым событиям, можно выделить психический (переживание), соматический (жестикуляция, мимика) и вегетативный (вегетативные реакции) компоненты. Степень проявления этих компонентов эмоций зависит от большей или меньшей вовлеченности в эмоциональные реакции структур мозга, при участии которых они реализуются. Это во многом определяется тем, какая группа ядер и структур лимбической системы активируется в наибольшей степени. Лимбическая система выступает в организации эмоций как своеобразный дирижер, усиливающий или ослабляющий выраженность того или иного компонента эмоциональной реакции.
Вовлечение в ответные реакции структур лимбической системы, связанных с корой больших полушарий, усиливает в них психический компонент эмоции, а вовлечение структур, связанных с гипоталамусом и самого гипоталамуса как части лимбической системы, усиливает вегетативный компонент эмоциональной реакции. В то же время функция лимбической системы в организации эмоций находится у человека под влиянием коры лобной доли мозга, которая оказывает корригирующее влияние на функции лимбической системы. Она сдерживает проявление излишних эмоциональных реакций, связанных с удовлетворением простейших биологических потребностей и, по-видимому, способствует появлению эмоций, связанных с реализацией социальных взаимоотношений и творчества.
Структуры лимбической системы, встроенные между частями мозга, принимающими непосредственное участие в формировании высших психических, соматических и вегетативных функций, обеспечивают согласованное их осуществление, поддержание гомеостаза и поведенческих реакций, направленных на сохранение жизни индивидуума и вида.
17. Ритмы головного мозга
Ритмы головного мозга
Альфа-ритм
Альфа ритм (α-ритм) — частота колебания варьируется от 8 до 13 Гц. Амплитуда 5-100 мкВ, наибольшая амплитуда проявляется при закрытых глазах и в затемненном помещении. Регистрируется преимущественно в затылочной и теменной областях (зрительных отделах мозга).
Регистрируется у 85-95 % здоровых взрослых людей. Альфа-ритм связан с расслабленным состоянием бодрствования, покоя. Альфа-волны возникают тогда, когда мы закрываем глаза и начинаем расслабляться.
Депрессия альфа-ритма (недостаток альфа-волн) возникает тогда, когда человек открывает глаза или думает над задачей, которая требует определенных зрительных представлений. При повышении функциональной активности мозга амплитуда альфа-ритма уменьшается вплоть до полного исчезновения. Так же может быть признаком беспокойства, гнева, страха, тревоги, вызывающие депрессию; нарушений связанных в той или иной мере с изменениями в деятельности активирующих систем мозга и, как следствие, с повышенным уровнем активации вегетативной и центральной нервной системы.
Бета-ритм
Бета-ритм (β-ритм) — частота колебания варьируется от 14 до 40 Гц. Амплитуда колебания обычно до 20 мкВ. В норме он весьма слабо выражен и в большинстве случаев имеет амплитуду 3-7 мкВ. Регистрируется в области передних и центральных извилин. Распространяется на задние центральные и лобные извилины.
Бета-волны — самые быстрые. Бета-ритм в норме связан с высшими когнитивными процессами и фокусированием внимания, в обычном бодрствующем состоянии, когда мы с открытыми глазами наблюдаем за происходящими событиями, или сосредоточенны на решении каких-либо текущих проблем.
Депрессия бета-ритма. Бета-ритм связан с соматическими, сенсорными и двигательными корковыми механизмами и дает реакцию угасания на двигательную активацию или тактильную симуляцию. При выполнении или даже умственном представлении движения бета-ритм исчезает в зоне соответствующей активности. Повышение бета-ритма — острая реакция на стрессовое воздействие.
Гамма-ритм
Гамма-ритм(γ-ритм)- частота колебания выше 30 Гц, иногда достигает 100 Гц, амплитуда обычно не превышает 15 мкВ. Регистрируется в прецентральной, фронтальной, височной и теменной зонах коры головного мозга.
Обычно очень хорошо наблюдается при решении задач, которые требуют максимального сосредоточения внимания.
Дельта-ритм[править
Дельта-ритм (δ-ритм) — частота колебания варьируется от 1 до 4 Гц. амплитуда расположена в пределах 20-200 мкВ (высокоамплитудные волны).
Дельта- ритм (медленные волны) связан с восстановительными процессами, особенно во время сна, и низким уровнем активации. При многих неврологических и других нарушениях дельта-волны заметно усилены. Избыток усиленных дельта-волн практически гарантирует наличие нарушений внимания и других когнитивных функций. Возникает при естественном и наркотическом сне, а наблюдается так же, как при регистрации от участков коры, граничных с областью, пораженной опухолью.
Тета-ритм
Тета-ритм (θ-ритм) — частота колебания данного ритма составляет от 4 до 8 Гц. Амплитуда находится в пределах от 20 до 100 мкВ. Регистрируется во фронтальных зонах и гиппокампе.
Тета-волны появляются тогда, когда спокойное, расслабленное бодрствование переходит в сонливость. Колебаниям в головном мозге становятся более медленными и ритмичными. Это состояние называется еще «сумеречным», поскольку в нем человек находится между сном и бодрствованием. В норме тета-волны связаны с изменением состояния сознания. Часто такое состояние сопровождается видением неожиданных, сноподобных образов, сопровождаемых яркими воспоминаниями. Большинство людей засыпают, как только в головном мозге появляется заметное количество тета-волн.
Тета-ритм связан с поисковым поведением, усиливается при эмоциональном напряжении, часто наблюдается при психотических нарушениях, состояниях спутанности сознания, сотрясениях мозга.
Высокий уровень тета-ритма может показывать состояние сонливости и утомления, что может быть проявлением астенического синдрома, хронического стресса.
Каппа-ритм
Каппа-ритм (κ-ритм)- частота колебания данного ритма лежит в пределах от 8 до 13 Гц. Амплитуда располагается в промежутке 5-40 мкВ. Регистрация данного ритма происходит в височной области головного мозга.
Сходен по частоте с альфа-ритмом. Наблюдается при подавлении альфа-ритма в других областях в процессе умственной деятельности.
Мю-ритм
Мю-ритм (μ-ритм)- часто колебания ритма от 8 до 13 Гц. Амплитуда обычно не превышает 50 мкВ. регистрируется в роландической области, т.е соответственно распределению бета-ритма (локализован в области Роландовой борозды).
Имеет параметры, сходные с альфа-ритмом, но отличается формой волн, имеющих округленные вершины и поэтому похожи на арки. Наблюдается у 10-15 % индивидуумов. Связан с тактильным и проприоцептивными раздражениями и воображением движения. Активируется во время умственной нагрузки и психического напряжения.
Тау-ритм, лямбда-ритм, сонные веретена
Частота колебания тау-ритма (τ-ритма) лежит в пределах от 8 до 13 Гц, частоты колебания лямбда-ритма (λ-ритма) и сонных веретен совпадает и находится в пределах от 12 до 14 ГЦ. Регистрация тау- и лямбда- ритмов происходит в области височной коры головного мозга. Сонные веретена регистрируются по всей коре головного мозга, однако наиболее выражены в центральных отведениях.
Тау-ритм отвечает блокадой на звуковые стимулы. В свою очередь сонные веретена представляют собой своеобразные вспышки активности.
Соотношение ритмов
Когда человек возбужден или насторожен альфа-волны замещаются низковольтными нерегулярными быстрыми колебаниями. Увеличение бета-активности при снижении альфа-активности может свидетельствовать о росте психоэмоционального напряжения, появлений тревожных состояниях (при закрытых глазах). Снижение альфа-ритма, повышение тета-ритма свидетельствует о проявлении депрессии (при закрытых глазах).
Усиление бета-составляющей и одновременное ослабление тета-составляющей эффективно при различных эпилептических синдромах, при синдроме нарушения внимания и гиперактивности, постинсультных нарушениях (спастичность, парезы, плегии), посттравматических синдромах и др.
Тета- и дельта-колебания могут встречаться у бодрствующего человека в небольших количествах и при амплитуде не превышающей амплитуду альфа-ритма. Патологическими считаются содержание δ и θ, которые превышают по амплитуде 40 мкВ и занимающие более 15% времени регистрации.
18. Механизмы сна
Природа сна постоянно интересует врачей, ученых разных специальностей — биологов, психологов, философов, да и простых людей. Величайшие мыслители уже давно обсуждали эту проблему.
Несмотря на то что все высшие позвоночные животные спят, а человек проводит во сне не менее трети своей жизни, природа и назначение этого состояния оставались неизвестными на протяжении веков. Хорошо известна была лишь витальная (жизненная, от лат. vita — жизнь) необходимость сна. Сон улучшает настроение, память, восстанавливает работоспособность человека. Психиатры всегда подчеркивали, что расстройство сна нередко является первым симптомом (признаком) психического заболевания. Современное состояние этой проблемы определяется открытиями в науке начала XX века. В свою очередь, эти открытия стали возможны благодаря созданию новых методов исследования.
Прежде всего это методы полиграфической регистрации физиологических процессов во время сна (т.е. одновременной регистрации нескольких физиологических функций — работы сердца, дыхания, мозга). Большую роль сыграли также методы биохимического анализа биологически активных веществ, участвующих в процессах сна, и, наконец, психологические исследования, благодаря которым стремительно накапливались новые данные, однако интегрировать их в целостную концепцию оказалось весьма непросто.
Теперь уже стало очевидным, что сон высших млекопитающих, включая человека, представляет собой не просто покой, т. е. отсутствие активности, а особое состояние высшей нервной деятельности, и это состояние не однородно. Краткая история вопроса такова. В лаборатории И. П. Павлова (начало XX века) было отмечено: если собакам предъявляли монотонные раздражители, например многократное повторение легкого прикосновения (касалкой) к коже бедра задней лапы, это вызывало у животных сонливость, и они часто засыпали. Из этого наблюдения был сделал вывод, что сон представляет собой широко разлившееся торможение (условное) по коре больших полушарий. Назначение такого торможения состоит в защите головного мозга собаки от монотонных раздражителей. Говоря о представлениях павловской школы о сне, нельзя не упомянуть случай, который приводился И. П. Павловым для иллюстрации своей концепции. В Германии в клинику профессора Штрюмпеля поступил больной, который в результате травмы потерял зрение и слух, вернее — у него слышало одно ухо и сохранились остатки зрения в одном глазу. Когда эти оба «окна в мир» закрывали, больной засыпал. В дальнейшем в лаборатории И. П. Павлова были проведены опыты на собаках, подтвердившие наблюдения, сделанные в клинике профессора Штрюмпеля. И. П. Павлов пришел к выводу, что если исключить постоянный приток импульсов в кору больших полушарий от органов чувств, — наступает сон.
Решающее значение в понимании нейрофизиологических механизмов сна имели работы по исследованию биоэлектрических процессов головного мозга животных и человека. В начале нашего столетия Г. Бергер зарегистрировал от головного мозга человека, находящегося в спокойном состоянии, синусоидальные колебания электрического потенциала с частотой 8-11 в секунду. Этот ритм получил название альфа-ритма. Альфа-ритм наиболее выражен в затылочных областях головного мозга и регистрируется в состоянии спокойного бодрствования с закрытыми глазами. Это открытие было началом применения электрофизиологического метода исследования к деятельности головного мозга человека.
В 30-х годах нашего столетия стало известно, что перерезка у кошки мозгового ствола на уровне среднего мозга (препарат спящего мозга) вызывает сон. Этот факт был хорошо известен врачам, и они называли это состояние комой (от греч. coma — сон). Такой сон у кошки сопровождался медленными электрическими колебаниями на ЭЭГ (так называемые сонные веретена). При перерезке мозга кошки на уровне первых шейных сегментов, т. е. отделение спинного мозга от головного, получали препарат бодрствующего мозга, т. е. кошка следила глазами за движущимися перед ней объектами, шевелила вибриссами, а на ЭЭГ регистрировали быстрые колебания с частотой бета-ритма. Совокупность этих данных привела исследователей к заключению, что структуры мозгового ствола осуществляют функцию пробуждения (arousal) головного мозга. Оказалось, что если у дремлющей кошки через специальные электроды, вживленные в область мозгового ствола, производить электрическую стимуляцию ретикулярной формации, то это приводит к мгновенному пробуждению животного и настораживанию.
Какие же структуры мозгового ствола кошки могут быть ответственны за состояние бодрствования? Это структуры ретикулярной формации, или сетчатой формации. Ретикулярная формация мозгового ствола была описана еще в прошлом столетии русским ученым В. М. Бехтеревым (1898) и испанским ученым Рамон-и-Кахалем (1909) как диффузное скопление нейронов, пронизанное многочисленными нервными волокнами и занимающее срединное положение в мозговом стволе. В настоящее время в составе ретикулярной формации мозга человека описано более 100 ядер. Для ретикулярной формации характерным является то, что многочисленные нейроны образуют как бы диффузную сеть (лат. reticulae — сеть, отсюда и название всей структуры головного мозга), которая пронизана большим числом волокон, идущих от сенсорных ядер мозгового ствола (ядра черепных нервов). Аксоны нейронов ретикулярной формации направляются вверх к коре больших полушарий, а также вниз к нейронам спинного мозга. Более того, сама ретикулярная формация мозгового ствола получает волокна от ряда структур головного мозга, в том числе от коры больших полушарий, и спинного мозга. Сейчас принята гипотеза, что в норме «ретикулярный разряд» запускает корковые механизмы бодрствования, которые, в свою очередь, регулируют тонус ретикулярной формации ствола. Основываясь на этом, можно объяснить и результаты опытов в лаборатории И.П.Павлова, когда собаки засыпали при действии монотонных раздражителей.
Эти раздражители возбуждают нейроны коры, которые, воздействуя на ретикулярную формацию ствола, и приводят к засыпанию собаки. Действительно, оказалось, что в состав ретикулярной формации мозгового ствола входят не только структуры, при возбуждении которых животное просыпается и становится активным (настораживание, принюхивание и пр.), но и структуры, активация которых вызывает засыпание животного. Это ядра шва. В окончаниях своих аксонов (синапсах) нейроны этих ядер выделяют серотонин. В опытах на животных было показано, что локальное разрушение этих ядер приводит к хронической бессоннице животного, которая может заканчиваться смертью. Известно, что истощение серотонина мозга у человека также приводит к хронической бессоннице.
В настоящее время известно, что сон не является однородным состоянием головного мозга. В 1953 г. американские исследователи Азеринский и Клейтман открыли феномен «быстрого сна». Этот феномен состоял в том, что медленноволновый сон (замедление колебаний ЭЭГ до 2—3 в секунду) периодически прерывался короткими периодами низкоамплитудной ЭЭГ высокой частоты (до 30-40 колебаний в секунду), что сопровождалось быстрыми движениями глазных яблок за закрытыми веками. Отсюда часто употребляемое название этой стадии — REM-стадия (от англ. rapid eye movement). Таким образом, сейчас принято выделять по крайней мере две стадии сна — «медленный» сон и «быстрый» сон. В этих терминах отражен характер частоты колебаний ЭЭГ человека в эти периоды. Согласно данным нейрофизиологических исследований «медленный» сон запускается ядрами шва. Эта цепочка ядер, содержащих серотонинергические нейроны, протянулась по средней линии через весь мозговой ствол от продолговатого до среднего мозга. Как уже указывалось, торможение синтеза серотонина в головном мозге приводит к бессоннице, которую можно прекратить введением умеренных доз 5-гидроокситриптофана (предшественника серотонина). Разрушение ядер шва также приводит к хронической бессоннице.
В настоящее время хорошо известно, как протекает сон человека. Переход человека от бодрствования ко сну проходит несколько стадий. Эти стадии надежно определяются по ЭЭГ, а также психологическому состоянию человека.
Стадия I (А-стадия) — дремота (на ЭЭГ — медленные волны и отдельные вспышки альфа-ритма).
Стадия II (В-стадия) — регулярно возникающие веретенообразные ритмы частотой 14—18 колебаний в секунду (так называемые сонные веретена), а также вертекс-потенциалы и К-комплексы. Под К-комплексами понимают вертекс-потенциалы с последующими сонными веретенами.
Стадии III, IV (С-, D-, Е-стадии) — собственно «медленный» сон (дельта-сон) (III стадия занимает 25-50%, IV стадия - 50%).
Весь ночной сон человека состоит из 4-5 циклов, каждый из которых начинается с периода «медленного» сна и завершается периодом «быстрого» сна (рис. 3.4). Длительность такого цикла относительно постоянна и у здорового человека составляет 90-100 мин. Структура ночного сна взрослого здорового человека также относительно постоянна: на «медленный» (дельта-сон) приходится 20-30%, на «быстрый» — 15-25%.
Период сна здорового взрослого человека принято делить на несколько стадий. Соотношение фаз сна в онтогенезе человека закономерно меняется (рис. 3.5). У новорожденных парадоксальная фаза сна занимает около 50% времени суток. По мере взросления длительность парадоксальной фазы сна снижается и составляет у взрослого человека 20-23%.
При избирательной депривации дельта-сна в восстановительную ночь увеличивается длительность III и IV стадий сна. Если человека полностью лишать сна, то в первую очередь увеличивается длительность дельта-сна, он быстрее наступает, и лишь на вторую ночь происходит компенсаторное увеличение длительности
«быстрого» сна. Можно думать, что человек прежде всего нуждается в медленноволновом сне. Установлено, что удлинение IV стадии сна улучшает запоминание вербального материала. При увеличении нагрузки на зрительный анализатор длительность дельта-сна увеличивается. Подобные данные получены и при исследовании «быстрого» сна. Результаты экспериментов по избирательной депривации «быстрого» сна свидетельствуют о высокой потребности человека в нем. Лишение человека «быстрого» сна приводит к значительным нарушениям психики: повышаются раздражительность и эмоциональная расторможенность, появляются галлюцинации, а при углублении этого состояния могут появиться параноидальные (навязчивые) идеи. Поскольку период «быстрого» сна обычно связывают со сновидениями, то приведенные выше результаты в некоторой степени согласуются с психоаналитической концепцией о роли сновидений в регуляции психической жизни. Есть сведения, что чем более интенсивны движения глаз во время «быстрого» сна, тем лучше воспроизводятся сновидения. Этому противоречат некоторые другие данные, например у слепорожденных движения глаз в «быстром» сне также возможны, но зрительные сновидения отсутствуют.
Психическая активность во сне.
Данные последнего времени говорят в пользу того, что сновидения могут быть и в «медленном» сне. Отсюда делается вывод, что потребность в сновидениях существует независимо от потребности в «быстром» сне как таковом и может быть даже первичной по отношению к определенным стадиям сна.
В последние годы получены данные об изменении структуры сна при обучении или при адаптации к новым условиям. Исследования в этом направлении приводят к заключению, что «быстрый» сон и сновидения необходимы для адаптации к информационно значимой ситуации и для усвоения только такой информации, к восприятию которой индивид не готов. В этой концепции не определено главное — для чего нужен «быстрый» сон? На этот вопрос есть несколько ответов. Например, можно предположить, что стадия «быстрого» сна в сложных ситуациях нужна для нахождения новых путей взаимодействия с этой ситуацией. Возможно, именно во время «быстрого» сна происходит творческое решение поставленной задачи. Другой ответ может состоять в предположении, что пути решения в новой ситуации находятся во время бодрствования, а закрепление (консолидация) путей решения творческой задачи происходит в «быстрой» фазе сна. Другими словами, «быстрая» фаза сна служит для улучшения мнестических процессов. Возможно, что «быстрый» сон только способствует консолидации за счет устранения препятствий (например, в этой стадии сна происходит блокирование входящей информации).
В настоящее время накоплены многочисленные сведения о психической активности человека во время различных стадий сна. При засыпании изменение психики происходит в следующей последовательности. Вначале наступает утрата волевого контроля за своими мыслями; затем присоединяется неуверенность в окружающей обстановке, элементы дереализации (нарушение контакта с реальностью). Эти изменения психики обычно объединяют под названием «регрессивный тип мышления». Под этим понимают мышление со следующими характеристиками: наличие единичных изолированных впечатлений или изолированных образов; наличие неполных (отрывочных) сцен; неадекватные, иногда фантастические представления; диссоциация зрительных образов и мыслей (зрительные образы не совпадают с направлением мыслей). Вместе с тем человек не утрачивает полностью контакта с внешним миром. В период засыпания психическая активность весьма многообразна. Часто возникают так называемые гипнагогические галлюцинации. Галлюцинации этого типа похожи на серию слайдов или картин. В отличие от них сновидения скорее похожи на фильмы. Отмечается, что гипнагогические галлюцинации возникают только при исчезновении из ЭЭГ доминирующего ритма бодрствования.
Все исследователи согласны с тем, что психическая активность в стадии «сонных веретен» сходна с «фрагментарным мышлением», вспоминанием мыслей, предшествующих засыпанию. Существует мнение, что в «медленный» сон эпизодически внедряются компоненты «быстрого» сна и пробуждения, случайное совпадение с ними приводит к сновидческим отчетам (сноговорение). Эпизоды сноговорения имеют место как в «медленном», так и «быстром» сне, хотя чаще наблюдаются в «медленном». С фазами «медленного» сна коррелируют такие сложные формы невербального поведения, как сомнамбулизм. Интересно, что отчет о сновидениях при пробуждении из «быстрого» сна — меньше 100% (обычно 70—95%). Считают, что частота отчетов зависит от нескольких факторов: эмоционального состояния субъекта перед сном, особенностей личности, что напрямую связано со степенью психологической защиты, и, по-видимому, от адаптивных возможностей самих сновидений (т. е. способности сновидения справиться с предъявляемой нагрузкой).
Таким образом, число отчетов о сновидениях может быть обусловлено двумя противоположно действующими факторами: 1) малой потребностью в сновидениях у лиц с высокой психологической зашитой, обусловленной активностью зашиты по типу перцептуального отрицания или интеллектуализации; 2) недостаточной адаптивной способностью самих сновидений при наличии выраженной потребности в них у высокосенситивных личностей в условиях внутрипсихического конфликта. Большинство сновидений базируются на слуховых, зрительных, реже обонятельных восприятиях и речи. Отсюда делают вывод, что они больше связаны с психосоциальной жизнью, чем непосредственно с сенсорным притоком. Сложность анализа сновидений обусловлена также тем, что в них используется язык образного мышления, не поддающийся полному и адекватному перекодированию на язык человеческого общения и, следовательно, вербального мышления.
Какова психологическая значимость сновидений? Одна из гипотез состоит в предположении, что информация, воспринятая во время дневного бодрствования, может активировать неприемлемые мотивы и неразрешимые конфликты, т. е. выполнять функцию психологической защиты. Косвенным доказательством в пользу этой гипотезы могут служить данные о том, что при депривации сна резко нарушается адаптация к стрессирующим воздействиям. Согласно другой гипотезе во сне используется невербально-образное мышление для решения проблем, которые не удается решить во время бодрствования. Возможно, во время сновидений происходит поиск путей взаимного примирения конфликтных мотивов и установок. С этой позиции сновидения представляют собой самостоятельный механизм психологической защиты. При этом конфликт устраняется не на основе его логического разрешения, а при помощи образов. Благодаря этому вытесняется невротическая и непродуктивная тревога. Таким образом, утверждается, что сновидения — это возврат к образному типу мышления. Более того, во время «быстрой» фазы сна мозг переходит в режим работы, похожий на бодрствование, но при этом происходит блокирование поступления внешней информации, т. е. мозг выполняет функцию психологической защиты.
19. Импринтинг
Импринт (буквально от англ. imprint – запечатлевать, оставлять след) — это имеющий большое значение опыт или последовательность жизненных опытов прошлого, сформировавшие у человека убеждение или целую совокупность убеждений (Роберт Дилтс «Изменение убеждений с помощью НЛП», часть 3).
Импринт — это не просто какое-то травмирующее событие в вашей биографии. Это убеждение или формирующий личность опыт. Он не обязательно должен быть травматическим. Это то, что отражается в вашей личности (Роберт Дилтс «Изменение убеждений с помощью НЛП», часть 2). Термин «imprint» был впервые описан в 1935 году Конрадом Лоренцом, лауреатом Нобелевской премии, австрийским этнографом и антропологом. Он установил, что, едва вылупившись из яйца, утята были заняты поиском «образа матери». Для определения своей матери они высматривали всего лишь одну конкретную субмодальность. Единственное, что должна была делать их мать, — это двигаться. Если появлялся двигающийся объект, они начинали повсюду следовать за ним. Например, когда Лоренц прогуливался, они за ним начинали бегать. По прошествии одного дня с небольшим импринт матери у утят завершался. После этого они уже полностью игнорировали даже свою настоящую мать, если таковую им пытались вернуть, и в данном случае повсюду следовали за этим пожилым австрийцем.
Для одного из утят таким импринтом был воздушный шарик, и когда шарик перемещали с места на место, то утенок повсюду следовал за ним. Когда этот утенок вырос, он не обращал абсолютно никакого внимания на своих соплеменниц, и все его ухаживания и стремление образовать пару были направлены на любой круглый предмет. Это говорит о том, что когда утенок вырос, то импринт матери перешел также и на подругу.
Он указывал, что дробление поведения на врожденное (собственно инстинктивное) и приобретенное (сформированное за счет индивидуального опыта, обучения) в большинстве случаев бывает условным.
Согласно Лоренцу, даже у животных целостный поведенческий акт состоял из комбинации врожденных механизмов реагирования — механизмов, в создании которых требуется специфический тип обучения — запечатление (импринтинг), приобретенных индивидуально и спонтанных. Под спонтанностью принято понимать такие изменения на выходе системы, для которых неизвестны соответствующие изменения на входе.
Лоренц указывал, что по своим свойствам запечатление существенно отличается от обычного ассоциативного обучения прежде всего тем, что оно происходит в определенные, достаточно узко ограниченные периоды онтогенеза. Второе его отличие состоит в том, что эффект запечатления практически необратим и в обычных условиях не угашается. Таким образом, информация, запечатленная в импринте, может быть как полезной для адаптации в конкретном социуме, так и нет. Анализируя явление запечатления и его роль в формировании поведения, Лоренц обращал внимание на его сходство с процессом дифференцировки органов в эмбриогенезе. В обоих случаях наличие чувствительного периода — необходимое условие для осуществления определенной реакции формообразования. Наиболее подробно эта проблема изложена в монографии Лоренца "Эволюция и модификации поведения".
Сегодня в этологии и биологии Импринтирование как механизм, реализующий генетические предпосылки в сочетании со стимулами внешней среды, склонны рассматривать как переходную эволюционную форму от полного генетического обуславливания непосредственно к обучению.
Белковый синтез и изменение синаптической структуры.
В ряде экспериментов было установлено, что импритинг тесно связан с увеличением белкового синтеза. В опытах с цыплятами Стивен Роуз и его коллеги устранили все возможные посторонние влияния. Синтез белка в мозгу цыпленка увеличивается в первые два часа после воздействия стимула. Исследователи перерезали у цыпленка нервные пути, которые служили для передачи зрительной информации из одного полушария в другое и закрывали один глаз цыпленка. В итоге в той половине мозга, которая была связана с открытым глазом, белковый синтез был выше, чем половине мозга, связанного с закрытым глазом. Возможно, что в процессе запоминания синтезируемые белки транспортируются к синапсу и изменяют его структуру.
Пространственная структура связей между нейронами.
Еще немецкий биолог Ричард Симон предполагал, что под воздействием стойкого запечатливания в мозговой ткани так называемых энграм может происходить модификация мозговой ткани. Он предполагал, что энграмма является биохимическим проявлением памяти и проявляется постоянным изменением нервной ткани, возникающим в процессе научения.
В настоящее время идеи изменения мозговой ткани под воздействием запечатленного опыта нашли некоторое подтверждение. Оказалось, что под влиянием индивидуального опыта происходят изменения в соединительных аппаратах мозговой ткани. Несмотря на то, что зрелые нейроны не делятся, было экспериментально доказано, что можно вызвать направленный рост новых нервных волокон, которые меняют пространственную структуру связей между нервными клетками. В отличие от процесса импринтинга, для появления энграмм необходимо достаточно длительное повторение сигналов, связанных с информацией, находящейся в регистре первичной (кратковременной) памяти. «Следовательно, — пишет Прибрам, — долговременная память является скорее функцией соединительных структур, чем функцией процессов в самой нервной клетке, генерирующей нервные импульсы». Предположительно в периоды импринтной уязвимости импринтирование приводит к устойчивому переструктурированию нейронных связей и изменению пространственного соотношения между ними.
В 1929 г. в своей книге «Механизмы мозга и разума» Карл Лешли, учитель Прибрама, занимавшийся исследованием энграммы, высказал идею, что «хранилищем» долговременной памяти в морфо-функциональном отношении является вся кора головного мозга. Прибрам, пытаясь разрешить ряд вопросов, возникших в ходе экспериментов, как раз и пришел к выводу, что мозг работает на голографическом принципе.
Конрад Лоренц, автор теории импринта, пришел к заключению, что условием образования стойкой биохимической связи в нашем мозге, то есть программы, является импринтная уязвимость — полная синхронизация деятельности правого и левого полушарий мозга — состояние, в котором мозг работает в режиме Альфа-ритмов. Для человеческого мышления характерны возрастные изменения — так мозг новорожденного ребенка генерирует преимущественно частоты дельта (0 – 4 Гц) и тета (5 – 7 Гц) — грудной ребенок в основном спит. Мозг ребенка до возраста полового созревания работает главным образом в режиме альфа (расслабленное состояние; 8 – 13 Гц) — это период интенсивного накопления информации. Другое дело, что воспринимается вся информация, независимо от качества. В состоянии бодрствования взрослого человека в мозге преобладают быстрые ритмы — бета (напряженное мышление; 13 – 25 Гц) и меньше альфа-волны, связанные с деятельностью коры больших полушарий. Бета-ритмы — способствуют поддержанию созданных ранее процессов и структур психики. Таким образом, создавая условия, при которых мозг будет работать на Дельта и Тета частотах мы можем как менять программы (предопределенные импринтами), так и создавать новые.
20. Таламус. Роль в двигательной активности
Таламус — парное образование, составляющее основную массу промежуточного мозга (имеет около 120 различных ядер), получающий импульсы всех видов чувствительности, кроме обонятельных, и передающий их в кору больших полушарий и другие образования центральной нервной системы.
Таламус расположен латеральнее III желудочка. Он занимает дорсальную часть промежуточного мозга и отделяется от нижележащего гипоталамуса бороздой. Два таламуса соединены по средней линии у 70% людей посредством межталамической промежуточной ткани серого вещества. От базальных ядер таламус отделяется внутренней капсулой, состоящей из нервных волокон, соединяющих кору со стволовыми структурами и спинным мозгом. Многие волокна внутренней капсулы продолжают ход в каудальном направлении в составе ножек мозга.
Ядра и функции таламуса
В таламусе выделяют до 120 ядер серого вещества. По месту их расположения ядра делят на передние, латеральные и медиальные группы. В задней части латеральной группы ядер таламуса выделяют подушку, медиальное и латеральное коленчатые тела.
Одной из важнейших функций таламуса является анализ, отбор и передача в кору головного мозга сенсорных сигналов, поступающих к нему из большинства сенсорных систем ЦНС. В этой связи таламус называют воротами, через которые в кору мозга поступают различные сигналы ЦНС. По выполняемым функциям ядра таламуса делятся на специфические, ассоциативные и неспецифические.
Специфические ядра характеризуются несколькими общими особенностями. Все они получают сигналы от вторых нейронов длинных восходящих афферентных путей, проводящих в кору мозга соматосенсорные, зрительные, слуховые сигналы. Эти ядра, иногда называемые сенсорными, передают обработанные сигналы в хорошо очерченные области коры — соматосенсорную, слуховую, зрительную сенсорные области, а также в премоторную и первичную моторные области коры. С нейронами этих областей коры специфические ядра таламуса имеют реципрокные связи. Нейроны ядер дегенерируют при разрушении (удалении) специфических областей коры, в которые они проецируются. При низкочастотной стимуляции специфических таламических ядер регистрируется усиление активности нейронов в тех областях коры, в которые нейроны ядер посылают сигналы.
К специфическим ядрам таламуса подходят волокна проводящих путей от коры, ретикулярной формации и ядер ствола мозга. По этим путям могут передаваться как возбуждающие, так и тормозные влияния на активность нейронов ядер. Благодаря таким связям кора мозга может регулировать потоки идущей к ней информации и отбирать наиболее значимую в данный момент. При этом кора может блокировать передачу сигналов одной модальности и облегчать передачу другой.
Среди специфических ядер таламуса имеются также несенсорные ядра. Они обеспечивают обработку и переключение сигналов не от чувствительных восходящих путей, а от других областей мозга. К нейронам таких ядер поступают сигналы от красного ядра, базальных ганглиев, лимбической системы, зубчатого ядра мозжечка, которые после их обработки проводятся к нейронам моторной коры.
Ядра передней группы таламуса участвуют в передаче сигналов от мамиллярных тел к лимбической системе, обеспечивая круговую циркуляцию нервных импульсов по кольцу: лимбическая кора — гиппокамп — гипоталамус — миндалевидное тело — таламус — лимбическая кора. Нейронную сеть, сформированную этими структурами, называют кругом (кольцом) Пайпеца. Циркуляция сигналов по структурам этого круга связана с запоминанием новой информации и формированием эмоций — эмоциональное кольцо Пайпеца.
21. Мозжечок. Роль в двигательной активности
Мозжечок — отдел головного мозга, относящийся к собственно заднему мозгу, участвующий в регуляции тонуса мышц, координации движений, сохранение позы, равновесия тела в пространстве, а также выполняющий адаптационно-трофическую функцию. Он располагается позади продолговатого мозга и варолиева моста.
В мозжечке различают среднюю часть — червячок и расположенные по бокам от него два полушария. Поверхность мозжечка состоит из серого вещества, называемого корой. Внутри мозжечка находится белое вещество, представляющее собой отростки нейронов. На поверхности мозжечка имеется множество складок, или листков, образованных сложными изгибами его коры.
Основные функции мозжечка:
- Регуляция позы и мышечного тонуса
- Коррекция медленных целенаправленных движений и их координация с рефлексами поддержания позы
- Правильное выполнение быстрых целенаправленных движений по командам коры больших полушарий в структуре общей программы движений
- Участие в регуляции вегетативных функций
22. Базальные ядра. Роль в двигательной активности
Базальные, или подкорковые, ядра представляют собой структуры переднего мозга, к которым относятся: хвостатое ядро, скорлупа, бледный шар и субталамическое ядро. Они располагаются под корой больших полушарий.
Развитие и клеточное строение хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование — полосатое тело. Базальные ядра имеют множественные афферентные и эфферентные связи с корой, промежуточным и средним мозгом, лимбической системой и мозжечком. В связи с этим они принимают участие в регуляции двигательной активности и, в частности, медленных или червеобразных движений. Примером таких двигательных актов является медленная ходьба, перешагивание через препятствия и т.д.
Опыты с разрушением полосатого тела доказали его важную роль в организации поведения животных.
Бледный шар является центром сложных двигательных реакций и участвует в обеспечении правильного распределения мышечного тонуса.
Свои функции бледный шар осуществляет опосредованно через образования среднего мозга — красное ядро и черную субстанцию.
Бледный шар также имеет связь с ретикулярной формацией. Он обеспечивает сложные двигательные реакции организма и некоторые вегетативные реакции. Стимуляция бледного шара вызывает активацию центра голода и пищевого поведения. Разрушение бледного шара способствует развитию сонливости и затруднению выработки новых условных рефлексов.
23. Двигательные зоны коры головного мозга
Двигательная область коры головного мозга: расположение, строение и функции
Часть мозга, которая выполняет работу произвольных движений является двигательной (моторной) корой. Необходимые движения осуществляются таким образом, чтобы они лучше всего подходят для текущей позиции индивида.
Левая двигательная кора участвует в регулировании движения правой стороны тела, а правая двигательная область коры головного мозга координирует движения левой стороны тела.
Задумывались ли вы, какая часть мозга играет решающую роль в обеспечении произвольных движений? Это двигательная кора. Она расположена в задней части лобной доли ― 1 из 4 основных долей, передней части мозга. Двигательная кора лежит перед центральной бороздой, как структура, которая позволяет отличить лобную долю и теменной доли.
Функция
Как следует из названия, двигательная кора отвечает за двигательные функции тела, она принимает участие в движении мышц для выполнения определенных задач. Наша способность производить движения, такие как собирание мелких предметов, привязаны к нормальной работе двигательной коры.
Будь то небольшие движения, такие как перемещение пальцев или большие движения, такие, как ходьба и бег, двигательная кора играет решающую роль прямо от начала выполнения движения. Проще говоря, сокращение мышц для нормального движения - это то, что находится под контролем двигательной коры.
В момент начала движения, верхние двигательные нейроны, расположенные в двигательной коре, передают электрические сигналы, которые идут через другие структуры мозга, такие как базальные ганглии и мозговой ствол, и поступают на нижние моторные нейроны, расположенные в спинном мозге. Сигнал затем проходит вниз от нижнего моторного нейрона к другому и, наконец, прибывает на нужные группы мышц. Получив сигнал, мышцы сокращаются, вызывая произвольные движения.
Премоторная кора
Для того, чтобы выполнить определенное движение, определенные мышцы должны сужаться. Премоторная кора головного мозга анализирует и точно определяет группы мышц, которые должны быть использованы для выполнения определенных движений. Она учитывает текущее положение и позу тела при выборе набора мышц для выполнения движения. Например, пиная футбольный мяч, премоторная кора решает какие мышцы ног задействовать, чтобы инициировать действие.
Первичная моторная кора
Эта часть мозга непосредственно взаимодействует с двигательными нейронами спинного мозга, чтобы стимулировать предназначенные мышцы. Короче говоря, первичная моторная кора участвует в передаче сигналов, которые вносят непосредственный вклад в создание движения.
Дополнительная моторная область
Одна из основных функций деятельности ДМО является надзор за ручной координацией. В ручной координации, множественные движения должны быть выполнены одновременно для достижения желаемого действия или задачи.
Например, действия, которые предполагают использование обеих рук потребуют координации между левой и правой двигательной корой. Это делается ДМО, которая позволяет производить совмещение движений одновременно для выполнения сложных действий. Поэтому наша способность двигать одновременно обе руки для выполнения определенной задачи приписывается работу ДМО.
ДМО также помогает определять последовательность движений, так как для выработки оптимального пути движения, необходимо осуществлять комплекс действий.
Сразу отмечу еще один момент заключается в том, что двигательная кора не решает, выполнять ли движение или нет. Например, увидев кусочек шоколада, лежащего на полу, решение его забрать принимается префронтальной корой, которая лежит непосредственно перед премоторной. Префронтальная кора, соответственно, дает сигналы двигательной области коры головного мозга, чтобы осуществлять движение. Кроме того, двигательная кора не единственная область, которая участвует в выполнении точных движений. Другие части мозга, такие как базальные ганглии и мозжечок, в равной степени способствуют производству движений.
24. Кора больших полушарий, ее участие в инициации и поддержании активности
По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.
Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.
В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:
- сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
зрительная зона — затылочная доля коры больших полушарий;
слуховая зона — височная доля коры больших полушарий;
зона вкусовых ощущений — теменная доля коры больших полушарий;
зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.
Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;
- моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
- ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.
Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.
Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.
Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.
В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».
Функции лобной доли:
- управление врожденными поведенческими реакциями при помощи накопленного опыта;
- согласование внешних и внутренних мотиваций поведения;
- разработка стратегии поведения и программы действия;
- мыслительные особенности личности.
В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.
В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.
Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.
У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.
Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.
Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.
25. Теория уровней управления движениями
Бернштейн Н.А. обнаружил, что в зависимости от того, какую информацию несут сигналы обратной связи (о степени напряжения мышц, положении частей тела и т.д.), они приходят в разные чувствительные центры мозга, и на разных уровнях переключаются на моторные пути. Он предположил, что для построения движений различной сложности «команды» отдаются на разных уровнях нервной системы. При автоматизации движений эта функция передается на более низкий уровень.
Бернштейн выделил следующие уровни:
1) А — самый низкий уровень. У человека он участвует в организации движений с другими уровнями, отвечает за тонус мышц, получает сигналы о степени напряжения мышц, информацию от органов равновесия. Он самостоятельно регулирует движения, связанные с вибрацией (дрожь), удержание позы в полетной фазе прыжка.
2) В — уровень синергий, отвечает за слаженные движения всего тела, ритмические и циклические движения, за автоматизацию двигательных навыков, выполняет внутреннюю координацию сложных движений, получает информацию о взаимном положении и движении частей тела. Движения этого уровня - потягивания, мимика.
3) C – уровень пространственного поля, обеспечивает ориентацию в пространстве, отвечает за движения, приспособленные к пространственным свойствам объектов (форме, положению, длине). Сюда поступает информация о внешнем пространстве. Движения: переместительные, баллистические.
4) D — уровень предметных действий. Это уровень коры головного мозга, отвечает за организацию действий с предметами в соответствии с их предметными назначениями. К нему относятся все орудийные действия и манипуляции с предметами. Здесь не фиксирован двигательный состав, движения могут быть разные, а конечный результат действия - одинаковый.
5) Е — уровень интеллектуальных двигательных актов. К нему относятся речевые движения, движения письма, символической, кодированной речи. Они определяются отвлеченным, вербальным смыслом, здесь речь идет о передаче знаний или замысла, что предполагает произвольный уровень регуляции действий. Бернштейн говорил, что этот уровень наименее изучен, и возможно, что здесь несколько уровней.
Чем сложнее, осмысленнее двигательная задача, тем более высок уровень построения движения, и тем более высокие уровни нервной системы участвуют в решении этой задачи и реализации движения.
Бернштейн Н.А. сделал важные выводы:
1) В организации сложных движений участвуют одновременно ведущий уровень, на котором строится движение, и все нижележащие (фоновые) уровни, но в сознании человека представлены только те компоненты движения, которые строятся на ведущем уровне, а работа фоновых уровней обычно не осознается.
2) Одно и то же движение может строиться на разных ведущих уровнях. Ведущий уровень построения движения определяется смыслом, или задачей, движения. Можно изменить характер протекания движения, изменив его смысл для исполнителя. Какие именно структуры участвуют в обеспечении построения движений человека, зависит от смысла движения. В подтверждение Бернштейн ссылался на исследование, проведенное во время войны: амплитуда движений раненой руки больного при решении двигательных задач менялась в зависимости от их смысла для испытуемого.
Данное положение показывает решающее значение такой психологической категории, как задача или цель движения, для организации и протекания физиологических процессов. Предполагается, это также свидетельствует о приоритете принципа активности над принципом реактивности.
26. Две системы инициации движений
Изучение процессов, определяющих выполнение моторных программ, привело к представлению о двух системах инициации движений. Известный физиолог Ю. Конорский выделил две системы инициации движений у животных, которые он образно назвал «эмоциональный» и «когнитивный» мозг. Одна из них - лимбическая система - эмоциональный мозг. С помощью этой системы осуществляется трансляция мотивации в действия, направленные на удовлетворение биологических потребностей (голода, жажды, потребности в безопасности и других).
Другая система, инициирующая движение животных, - это, по определению Конорского, «когнитивный мозг», представленный ассоциативными отделами коры больших полушарий. Он обеспечивает запуск различных специфических движений в соответствии с инструкцией, установкой на ответ, прошлым опытом и обучением.
Произвольные движения человека - это сознательно регулируемые движения. Ведущая роль в управлении произвольными движениями человека принадлежит передним отделам коры больших полушарий - блоку программирования, контроля и регуляции поведения.
Проблемы инициации движения имеют прямое отношение к проблеме активности в поведении человека и животных. В этом контексте снова необходимо обратиться к идеям Н.А. Бернштейна. На основе исследований двигательной активности он сформулировал принцип активности, который постулирует определяющую роль внутренней программы в актах жизнедеятельности организма.
В соответствии с этим принципом все виды двигательной активности образуют своеобразный континуум. На одном его «полюсе» располагаются простые жестко фиксированные двигательные реакции, однозначно определяемые действием внешнего стимула (безусловные рефлексы типа мигательного, чихательного и т.д.).
Далее идут движения, также обусловленные действием внешнего стимула, но уже не столь жестко связанные с ним по содержанию. Например, при слишком сильных звуках музыки в соседней комнате человек может либо закрыть дверь в эту комнату, либо выключить радио, либо уменьшить силу звука. В этом случае налицо варианты выбора двигательной программы, причем результат выбора не связан с движением как таковым, а определяется другими мотивами, в том числе социальными.
Испытывающий дискомфорт от громких звуков человек ограничивается тем, что закрывает дверь, потому что не хочет или не может мешать другим, тем кого такая степень звучания вполне устраивает. В подобных случаях внешний стимул не просто вызывает движение. Скорее он побуждает человека принять решение о реализации одной из альтернативных программ.
На другом «полюсе» оказываются двигательные акты, для которых и инициатива, и программа задаются изнутри организма. Это и есть собственно произвольные двигательные акты. Инициация подобных актов у человека подчиняется задачам жизнедеятельности в самом широком смысле слова. По представлениям Н.А. Бернштейна, жизнедеятельность организма нельзя рассматривать как уравновешивание организма с окружающей средой, направленное на сохранение наличного статуса или постоянства внутренних условий, она представляет собой движение по пути реализации родовой программы развития и самообеспечения.
27. Нейронные механизмы сочетания движения глаз, головы, рук.
Сравнительный анализ нервно-мышечной организации глазодвигательной активности и других соматических движений позволяет выявить черты как сходства, так и различия.
Моторика глаз подчинена главным принципам работы нервно-мышечной системы и то же время обладает определенной спецификой, обусловленной той ролью, которую выполняет двигательный аппарат глаза в процессе реализации зрительных функций.
Предельно высокая скорость глазных скачков способствует быстроте зрительных ориентировок (и оптомоторных реакций) и обеспечивает фильтрацию тех перемещений изображения по сетчатке, которые вызываются собственными движениями глаз. На пути решения этих задач произошла, по-видимому, дивергенция двух механизмов, которые в работе других мышц разделены в меньшей мере, а именно механизма рекрутирования двигательных единиц и механизма градуальных изменений частоты разрядов нейронов. В результате такой дивергенции иннервация саккад приобрела специфический "взрывной" характер, а плавные движения (при фовеальном прослеживании) управляются по принципу частотной регуляции мышечных сокращений. Проблема взаимодействия фазических и тонических единиц требует дальнейших фактических уточнений. Однако на сегодня она может быть гипотетически решена следующим образом. Наиболее вероятно, что "истинные" тонические единицы участвуют в эволюционно древних компенсаторных движениях глаз, афферентируемых вестибулярно.
В филогенезе нервная трубка начинает свертываться на уровне будущего продолговатого мозга, и уже отсюда происходит ее дальнейшее развитие в обе стороны. Это вполне объяснимо: именно здесь, в непосредственной близости от ротового отверстия, закладываются важнейшие вегетативные и соматические образования. Здесь формируется древнейший вегетативно-соматический "координационный центр", с которого и начинается процесс кефализации. В условиях примитивного червеобразного движения повороты переднего конца тела способствовали пространственной ориентации животного, возможности которой значительно расширились с появлением светочувствительных нервных окончаний - зачатков будущих глаз.
С этих позиций становится понятным смысл представительства моторного аппарата зрения в нижних оливах - парных ядрах продолговатого мозга, участвующих в регуляции поворотов головы и ориентации тела. Видимо, благодаря таким связям глазодвигательный аппарат современных позвоночных в ходе своего развития оказался включенным в интегральную схему пространственной ориентации животного, позволяющую координировать движения головы, глаз и всего тела. Поскольку ориентация и перемещение в пространстве неразрывно связаны с влиянием гравитации, уже на ранних этапах филогенеза позвоночных сформировался контур регулирования глазодвигательной активности, объединяющий вестибулярный аппарат, мозжечок и нижние оливы.
Глаза современных позвоночных сформировались в результате "выпячивания" нервной трубки на уровне среднего мозга. Поэтому исходную основу ретинального контура регулирования движений глаз составляют мезэнцефалические нервные образования. Верхние двухолмия (ВД), в которых оканчиваются аксоны ганглиозных клеток, - это, по существу, стволовые ганглии глазных сетчаток. По своему происхождению они могут рассматриваться как аналоги сегментарных афферентных ганглиев спинного мозга. В таком случае клетки глубоких слоев ВД и покрышки (тегментума) среднего мозга оказываются аналогами сегментарных интернейроов, роль которых заключается в мультисенсорной интеграции зрительных, слуховых и приприоцептивных (от мышц глаз, шеи и других) посылок. Полисенсорная конвергенция на нейронах ВД имеет, видимо, решающее значение для реализации двух механизмов:
а) соотнесения моторики глаз с общей соматической моторикой;
б) адекватных оптомоторных реакций, т.е. движений в ответ на зрительные сигналы. Нейроны глубоких слоев ВД посылают свои аксоны в парамедиальную ретикулярную формацию моста, а их коллатерали поступают непосредственно во все глазодвигательные ядра.
Таким образом, кратчайший путь, реализующий глазадвигательный ответ на зрительный стимул, включает в себя следующие инстанции: рецепторы сетчатки - ганглиозные клетки - клетки афферентного поверхностного слоя ВД - интернейроны ВД - премоторные нейроны глубоких слоев ВД - мотонейроны глазодвигательных ядер. ВД, по всей вероятности представляет собой тот уровень, на котором под управляющим воздействием идущих из коры ( а также из других инстанций ) импульсов, происходит селекция ретинальных сигналов, нужных для организации адекватной моторики в соответствии с текущими поведенческими задачами.
Говоря о роли ВД в регулировании глазодвигательной активности, нельзя не учитывать, что движения глаз могут афферентироваться другими сенсорными входами, не включающими ВД. Так для реализации вестибуло-окуломоторного рефлекса достаточно связей, охватывающих вестибулярных аппарат, ядра парамедиальной ретикулярной формации и глазодвигательные ядра. Нейроны ВД не активируются при плавных прослеживающих движениях глаз. Выдвинуто предположение, что в этом случае функционирует контур регулирования, содержащий в качестве центрального звена латеральные коленчатые тела. Таким образом, стволовой уровень глазодвигательного контроля представляет весьма сложную, относительно сепаратную (способную самостоятельно функционировать), филогенетически древнюю целостную систему, работающую в неразрывном единстве с сенсорными единицами этого же (стволового) уровня. Именно этим уровнем детерминируются основные динамические характеристики глазодвигательной активности, согласованная работа обоих глаз и координация движений глаз с другими моторными компонентами поведения. В этом случае неизбежно возникает вопрос о принципиальном значении и реальных механизмах высшего кортикального управления глазодвигательной активностью.
Активация фронтальных глазодвигательных полей связана не только с движениями глаз, но и с поворотами головы и играет, вероятно, важную роль в координации движений глаза и руки человека. Париетальная кора ответственна за точную пространственную организацию глазных движений в соответствии со "схемой тела" и изменениями положения тела в пространстве.
Таким образом, различные кортикальные зоны не просто "двигают" глаза, а организуют сложные синергии с участием движений глаз. Иерархический подход к организации движений глаз показывает, что вопросы о разделении функций "по вертикали", характер соподчинения отдельных этажей и их роль в инициации моторных компонентов поведения - сложная и далеко не решенная проблема. По-видимому, в реальных условиях поведения и деятельности взаимодействия внутри иерархии могут быть весьма вариативными. В разных ситуациях и при разных степенях обученности системы в целом ведущая роль может принадлежать разным звеньям и дихотомический выбор между двумя направлениями движения командных посылок (или моторных программ) - снизу вверх или сверху вниз - вовсе не является обязательным.
28. Нейронные механизмы построения движений
Программирование движений. Каждому целенаправленному движению предшествует формирование программы, которая позволяет прогнозировать изменения внешней среды и придать будущему движению адаптивный характер.
Результат сличения двигательной программы с информацией о движении, передающейся по системе обратной связи, является основным фактором перестройки программы. Последнее зависит от мотивированности движения, его временных параметров, сложности и автоматизированности.
Мотивации определяют общую стратегию движения. Каждый конкретный двигательный акт нередко представляет собой шаг к удовлетворению той или иной потребности. Биологические мотивации приводят к запуску либо жестких, в значительной степени генетически обусловленных моторных программ, либо формируют новые сложные программы. Однако мотивация определяет не только цель движения и его программу, она же обуславливает зависимость движения от внешних стимулов. В качестве обратной связи здесь выступает удовлетворение потребности.
Двигательная команда определяет, как будет осуществляться запрограммированное движение, т.е. каково распределение во времени тех эфферентных залпов, направляемых к мотонейронам спинного мозга, которые вызовут активацию различных мышечных групп. В отличие от программ команды движения должны точно соответствовать функциональному состоянию самого скелетно-двигательного аппарата как непосредственного исполнителя этих команд. Непосредственное управление движением обуславливается активностью моторной зоны коры, полосатого тела и мозжечка. Полосатое тело участвует в преобразовании "намерения действовать" в соответствующие "командные сигналы" для инициации и контроля движений.
Особую роль в программировании движения играют ассоциативные системы мозга, и в первую очередь таламопариетальная ассоциативная система. Во-первых, именно она участвует в формировании интегральной схемы тела. При этом все части тела соотносятся не только друг с другом, но и с вестибулярными и зрительными сигналами. Во-вторых, она регулирует направление внимания к стимулам, поступающим из окружающей среды так, чтобы учитывалась ориентация всего тела относительно этих стимулов. Эта система "привязана" к настоящему моменту времени и к анализу пространственных взаимоотношений разномодальных признаков.
Таламофронтальная ассоциативная система отвечает за переработку информации о мотивационом состоянии и происходящих в организме вегетативных изменениях. Фронтальная ассоциативная область коры опосредует мотивационные влияния на организацию поведения в целом благодаря связям с другими ассоциативными областями и подкорковыми структурами. Таким образом, фронтальные отделы коры больших полушарий, контролируя состояние внутренней среды организма, сенсорные и моторные механизмы мозга, обеспечивают гибкую адаптацию организма к меняющимся условиям среды.
Функциональная структура произвольного движения. Из вышеизложенного следует, что в обеспечении любого движения принимают участие разные компоненты, поэтому один из главных вопросов состоит в том, каким образом обеспечивается единовременность команды, поступающей к исполнительным аппаратам. Независимо от стратегии и тактики конкретного движения, основная задача системы, обеспечивающей программу, заключается в координации всех компонетов команды.
ЦНС располагает некоторым числом генетически закрепленных программ (например, локомоторная программа шагания, базирующаяся на активности спинального генератора). Такие простые программы объединяются в более сложные системы типа поддержания вертикальной позы. Подобное объединение происходит в результате обучения, которое обеспечивается благодаря участию передних отделов коры больших полушарий.
Самой сложной и филогенетически самой молодой является способность формировать последовательность движений и предвидеть ее реализацию. Решение этой задачи связано с фронтальной ассоциативной системой, которая запоминает и хранит в памяти такие последовательности движений. Высшим отражением этого кодирования у человека является вербализация, или словесное сопровождение, основных понятий движения.
Всеобщей закономерностью работы системы управления движениями является использование обратной связи. Сюда входит не только проприоцептивная обратная связь от начавшегося движения, но и активация систем поощрения или наказания. Кроме того, включается и внутренняя обратная связь, т.е. информация об активности нижележащих уровней двигательной системы, или эфферентная копия самой двигательной команды. Этот вид обратной связи необходим для выработки новых двигательных координаций. Для движений различной сложности и скорости обратная связь может замыкаться на разных уровнях. Поэтому оба типа управления — программирование и слежение — могут сосуществовать в системе управления одним и тем же движением.
В заключение целесообразно привести высказывание выдающегося физиолога Н.А. Бернштейна о том, что движения "...ведет не пространственный, а смысловой образ и двигательные компоненты цепей уровня действий диктуются и подбираются по смысловой сущности предмета и того, что должно быть проделано с ним".
29. Сущность движения. Формирование навыка.
Психофизиологическое направление в психологии рассматривает движения человека в терминах рефлекторных актов, последовательно описываемых движение в виде комплекса рефлексов.
С позиций данного направления движение существует в форме двигательного комплекса (навыка). Понятие «навык» понимается как моторный акт, жестко «завязанный» с условиями его проведения. Рефлекс является единицей анализа двигательных, моторных актов человека. Для Вундта В. движение становится «бессознательным умозаключением», К.Д.Ушинский считает его «полурефлексом» (результатом воспитания), П.Ф.Лесгафт определяет человеческое движение «сознательной физической работой».
А.А.Ухтомский, исследуя физиологические свойства мышечного сокращения, выделил «живой активный хронотип», индивидуально характерный для каждого человека. В этом понятии А.А.Ухтомский характеризует человеческие свойства движений со стороны задействованного в движение времени и пространства индивидуального характера. Кроме того, Ухтомский А.А. отметил образование нервно-мышечного субстрата как состояния мышечной ткани, характерной для данного движения («нервно-мышечные констелляции»). Эти констелляции создаются неоднократным повторением одного и того же движения, они становятся дополнительной опорой в необходимом ограничении избыточных инерциальных проявлений движения. А.А.Ухтомский показал, что образование констелляций позволяет работающей мышце приобрести дополнительную экономичность ее работы в данном движении. Вот почему выученное новичком движение сразу не позволяет реализовать его возможности: констелляции должны «созреть».
Н.А.Бернштейн показал сложность человеческих действий и назвал их «живым! движениями». «Живое» наполнение человеческих движений Н.А.Бернштейн видел в том, что, кроме внешних воздействий на тело человека, человеку приходится учитывать и внутренние колебания конструкции тела. Еще более усложняется картина «живого движения» по Н.А.Бернштейну, когда человек выделяет цели и мотивы собственных движений в виде «образа потребного будущего», становящегося матрицей управления движениями. «В овладении движением Н.А.Бернштейн выделил три стадии: 1) стадия «излишнего закрепощения» движений, когда производится иммобилизация избыточных степеней свободы системы, 2) стадия уточнения степени участия в движении отдельных мышечных групп и 3) стадия точного использования всех сопутствующих движению сил инерции, тяжести, реактивных сил и энергозатрат». На примере биодинамики ходьбы и бега Н.А.Бернштейн показал, что «текущая коррекция» движений, как «живого» движения, представляет собой «повторение без повторения» и этим обеспечивает надежность воспроизведения движений человека и ее вариативность.
В исследованиях движений Н.А.Бернштейн доказал, что уровни управления физиологическими структурами движений выступают уровнями построения движения. В своей классификации структур построения движений Н.А.Бернштейн разделил их на:
1) познотонические (уровень «А»),
2) автоматизированные (уровень «В»),
3) сложные движения (уровень «С»),
4) «предметные действия» — действия с вещами (уровни «Д» и «Е»).
Такой подход давал возможность Н.А.Бернштейну утверждать, что разные стороны, свойства движения контролируются разными нервными структурами, своим специфическим способом и одновременно. Целеполагание всех движений контролируется сверху вниз. Высшим отделам мозга принадлежит и предвосхищение (антиципация) реализуемого движения, им строится, как считал Н.А.Бернштейн, «образ потребного будущего». Среднему мозгу Бернштейн отводил роль регулятора степени напряжения мышц, поддерживающего задаваемый темп и ритм движений, программирования последовательности включения и выключения задействованных мышц. Низшие отделы мозга принимают участие в каждом движении, обеспечивая определенный режим деятельности задействованием сосудистых, тонических, эндокринных и Других систем организма человека.
Последующие исследования движений человека реализованы в спортивной биомеханике: Д.Д.Донской, В.М.Зациорский, В.Б.Коренберг, В.Д.Мазннченко, А.Н.Мишин, В.Т.Назаров, В.Н.Тутевич и т.д. Все они опирались на результаты исследований Н.А.Бернштейна.
Наследие Н.А.Бернштейна разрабатывается и в трудах физиологов: А.С.Батуев, С.Г.Геллершгейн, В.С.Гурфинкель, Я.М.Коц, А.Н.Крестовников и др.
Заметное влияние на понимание проблем психологии движений оказали работы Б.Г.Ананьева. Он показал, что асимметрия восприятия левой и правой половины тела человека несет определенные функции в анализе пространственных представлений действующего человека. Он доказал, что одна стороне тела «специализируется» в сенсорном направлении обеспечения движений, другая — в реализации практических действий.
«В зарубежных исследованиях авторы описывают движение человека чисто прагматически. Чаще всего в анализе движений человека исследователи опираются на физиологическое знание рефлекторного акта или на его бихевиористическое понимание, где движения приравниваются к реакциям в системе «стимул — реакция». В этой диаде психологическое содержание несут стимулы, которые инициируют реакции. Анализ двигательной деятельности сводится к отысканий стимулов, которые реализуют соответствующие им реакции. Возникновение стимулов и содержание реакций обычно не рассматриваются, они как бы присутствуют изначально. Такой анализ не раскрывает содержания деятельности ни ее стороны стимула, ни со стороны реакции. В стимуле остается скрытым целеобразование и мотивация деятельности, а в реакциях за кадром у них остается пространственно-временная и практическая сторона деятельности. Этих взглядов на движение придерживаются, в основном, американские психологи, которые описывают эти проблемы в разрезе «моторного научения».
В своей докторской диссертации А.Леонтьев рассматривает генез деятельности, как животных, так и человека. Им последовательно представлено доказательство развития психики допсихической жизни, развитие сенсорной и перцептивной психики животных в соответствии с развитием их деятельности и восприятия. Эти данные имеют прямое отношение к анализу психического развития ребенка. В своей работе А.Н.Леонтъев выделяет развитие структурных компонентов деятельности человека, начиная с уровня перцептивной психики: деятельность, действие, операции, функциональный блок. Там же им дается психологическое определение комплексу движений, навыку, как автоматизированному образованию, исполняемому на более низком уровне в сравнении с уровнем своего происхождения.
30. Функциональная ассиметрия нервной системы. Влияние на контроль и проявление движений.
Под функциональной межполушарной асимметрией понимают неравнозначность функциональных структур правого и левого полушарий мозга, выраженная в их специализации, т.е. доминировании в осуществлении какой-либо функции.
Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную асимметрии мозга.
При исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный сигнал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса – левое. Правое полушарие реализует цели, осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные сигналы и относительные признаки предметов. Левое полушарие определяет цели, производит переработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения.
В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций, в целом оно более «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.
В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создаёт предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак (форма, величина и др.) анализируются раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.
Моторная асимметрия связана с тем, что мышцы конечностей и туловища одной стороны тела контролируются моторной корой противоположного полушария (некоторые мышцы лица контролируются обоими полушариями).
Однако участие правого и левого полушарий в осуществлении различных функций носит не глобальный, а парциальный характер. Установлено, что каждый вид функциональной асимметрии подразделяется на множество парциальных асимметрий. В частности, различные моторные функции (движение конечностей, глаз, мимических мышц и т.д.) могут осуществляться с доминирующим участием как правой, так и левой части тела. Более того, у одного человека могут быть различные варианты сочетаний доминирования, например, руки в различных действиях (пишет правой рукой, рисует левой), или ноги (правая толчковая, левая маховая). Аналогично сенсорная латерализация функций выражается в том, что один из парных органов чувств лучше воспринимает стимулы, например, доминантный глаз лучше видит, доминантное ухо лучше слышит и т.д. Высшие психические функции также латерализованы и это выражается в особенностях приёма, переработки и хранении информации, выбора стратегий поведения. «Левополушарные» люди рациональны, последовательны, логичны. «Правополушарные» отличаются непоследовательностью принятия решений, оценивают ситуацию целостно, не дробя её на отдельные фрагменты, не анализируя. От медлительных «левополушарных» людей «правополушарных» отличает мгновенность принятия решения, которое не всегда оказывается верным. У «левополушарных» людей лучше выражены процессы долговременной памяти, лучше запоминается вербальная информация, тогда как у «правополушарных» память образная, «фотографическая», и непосредственное запоминание выражено лучше, чем отсроченное.
Присущее субъекту сочетание различных видов асимметрии называется индивидуальным профилем асимметрии (синонимы: латеральный фенотип, латеральная конституция, латеральный профиль). Предполагают, что профиль межполушарной асимметрии является одним из важных механизмов сохранения как общевидовых, так и индивидуальных свойств организма и его поведения, сохраняя его уникальность. В разнообразии латеральных фенотипов отражается биологическая устойчивость человека как вида.
Латеральный профиль асимметрии передаётся по наследству, однако, чем выше уровень организации функций, тем дольше период её созревания, тем сильнее её латеральность подвержена средовым и социальным воздействиям. В онтогенезе сенсомоторных функций наблюдается некоторые усиления правосторонней латерализации с возрастом; у маленьких детей чаще отмечают леворукость, левоногость, левоглазость и левоухость.
Существуют данные о половых отличиях в скорости созревания полушарий мозга: у мальчиков к моменту рождения более зрелое правое полушарие, а у девочек – левое. Связывают это с гормональной регуляцией межполушарных асимметрий. Андрогены оказывают преимущественно тормозное влияние на высшие отделы центральной нервной системы. В основном это влияние рецептируется левым полушарием. Эстрогены, возможно, и прогестерон, оказывают преимущественно активизирующее действие как на левое, так и на правое полушарие. Поэтому девочки раньше начинают говорить, а также лучше читают, чем мальчики. Результаты исследований свидетельствуют о том, что мозг мужчин организован более асимметрично, чем мозг женщин и доминирование левого полушария над правым встречается чаще. Клинические данные показывают, что афазия при поражении левого полушария возникает у мужчин в 3 раза чаще, чем у женщин. Эти данные подтверждают представления о том, что у женщин речевые и пространственные способности представлены в большей степени билатерально, а у мужчин более выражена латерализация. Морфологически это может быть обусловлено тем, что величина задней области мозолистого тела у женщин больше, чем у мужчин, что способствует более интенсивному межполушарному взаимодействию. В то же время у большинства женщин выше уровень лабильности нервных процессов. Считается, что тип полушарного доминирования у мужчин является устойчивым и сохраняется в различных жизненных ситуациях. У женщин повышенная лабильность обеспечивает лёгкость перехода из доминирующего правого полушария на левое. Возможно, эта функциональная особенность позволяет женщинам успешно использовать различные способы восприятия и мышления и обеспечивает большую приспособленность к различным жизненным ситуациям. Приобретя большую стабильность в процессе эволюции, мозг женщин теряет в уровне большей дифференцированности полушарий, свойственной мужскому мозгу, а значит и связанной с нею более высокой степенью возможности развития высших психических функций.
С позиций функциональной асимметрии мозга в настоящее время рассматривается учение И.П.Павлова о сигнальных системах действительности. Установленное И.П.Павловым существование людей с преобладанием второй сигнальной системы над первой с хорошо выраженным логическим мышлением, для которых характерно оперирование цифрами, математическими формулами и другими знаковыми системами, – это лица с активным левым полушарием. Те, у которых преобладает первая сигнальная система над второй, – лица с образным типом мышления, для которых характерно использование ощущений, догадок, предчувствий, наглядных жизненных примеров, — доминирует левое полушарие.
Однако, как показали исследования, функциональная специализация полушарий лишь условно даёт право разделять их на доминантное и субдоминантное. По ряду функций у большинства взрослых людей специализировано левое полушарие, за другие отвечает правое, но в реализации психической деятельности оба полушария тесно взаимодействуют.
31. Программы движений
Управление движениями немыслимо без согласования активности большого количества мышц. Характер этого согласования зависит от двигательной задачи. Так, если нужно взять стакан воды, то ЦНС должна располагать информацией о положении стакана относительно тела и об исходном положении руки. Однако чтобы движение было успешным, кисть заранее раскрылась на величину, соответствующую размеру стакана, чтобы сгибатели пальцев сжимали стакан с силой, достаточной для предотвращения проскальзывания, чтобы приложенная сила была достататочной для плавного подъёма, но не вызывала резкого отрыва, чтобы ориентация стакана в кисти после захвата всё время была вертикальной. Таким образом, чтобы реализация движения соответствовала двигательной задаче, необходимы не только данные о пространственных соотношениях, но и сведения о свойствах объекта манипулирования. Многие из этих сведений не могут быть получены в ходе самого движения посредством обратных связей, а должны быть предусмотрены на этапе планирования. Следовательно, для осуществления движения должна быть сформирована двигательная программа. Двигательную или центральную программу рассматривают как заготовленный набор базовых двигательных команд, а также набор готовых корректирующих подпрограмм, обеспечивающих реализацию движения с учётом текущих афферентных сигналов и информации, поступающей от других частей ЦНС.
Зарождение побуждения к движению связано с активностью подкорковых и корковых мотивационных зон. Замысел движения формируется в ассоциативных зонах коры. Далее происходит формирование программы движения с участием базальных ганглиев и мозжечка, действующих на двигательную кору через ядра таламуса. За реализацию программы отвечает двигательная кора и нижележащие стволовые и спинальные двигательные центры.
Предполагается, что двигательная память содержит обобщённые классы двигательных программ, из числа которых в соответствии с двигательной задачей выбирается нужная. Программа модифицируется применительно к ситуации: однотипные движения могут выполняться быстрее или медленнее, с большей или меньшей амплитудой. Интересно, что одна и та же программа может быть реализована разными наборами мышц. Так, почерк человека сохраняет характерные черты при письме правой и левой рукой и даже карандашом, зажатым в зубах или прикреплённым к носку ботинка. Такой межконечностный перенос навыка возможен потому, что система управления движениями является многоуровневой (уровень планирования движения и уровень его исполнения в ней не совпадают). Действительно, произвольное движение планируется в терминах трёхмерного евклидового пространства. Для исполнения этого плана необходимо перевести линейные перемещения в соответствующие угловые переменные (изменения суставных углов), определить, какие мышечные моменты необходимы для этих угловых перемещений и, наконец, сформировать двигательные команды, которые вызовут активацию мышц, дающую необходимые значения моментов.
Двигательная программа может быть реализована различными способами. В простейшем случае ЦНС посылает к мышцам заранее сформированную последовательность команд, не подвергающуюся во время реализации никакой коррекции. В этом случае говорят о разомкнутой системе управления. Подобное управление используется при осуществлении быстрых, так называемых «баллистических» движений. Чаще всего ход осуществления движения сравнивается с его планом на основе сигналов от многочисленных рецепторов, и в реализуемую программу вносятся нужные коррекции. Это замкнутая система управления с обратными связями. Однако и такое управление имеет недостатки. В связи с относительно малыми скоростями проведения сигналов, значительными задержками в центральном звене обратной связи и значительным временем, необходимым для развития усилия мышцей, коррекция движения по сигналу обратной связи может запаздывать. Поэтому во многих случаях целесообразно реагировать не на отклонение от плана движения, а на само внешнее возмущение ещё до того, как оно успело вызвать отклонение. Такое управление называют управлением по возмущению.
Другим способом уменьшения влияния задержек является антиципация. Во многих случаях ЦНС способна предусмотреть в двигательной программе появление возмущений ещё до их возникновения. Примечательно, что эта упреждающая «позная» активность (антиципация) осуществляется автоматически с очень короткими центральными задержками. Роль упреждающей активности в стабилизации положения звеньев тела иллюстрирует простой пример. Если официант удерживает на ладони вытянутой руки поднос с бутылкой шампанского и рюмками, а другой человек внезапно снимет бутылку с подноса, то рука резко подпрыгнет вверх с соответствующими последствиями. Если же он сам снимет бутылку свободной рукой, то рука с подносом останется на прежнем уровне.
32. Координация движений
Представление о координации движений возникло на основе наблюдений больных, которые в силу разных причин не в состоянии плавно и точно осуществлять движения, легко доступные здоровым людям. Координацию можно определить как способность реализовать движение в соответствии с его замыслом. Даже для простейшего движения – движения в суставе с одной степенью свободы – необходима согласованная работа как минимум двух мышц агониста и антагониста. В действительности на каждую степень свободы, как правило, приходится больше одной пары мышц. При этом многие мышцы являются двухсуставными, т.е. действуют не на один, а на два сустава. Именно поэтому, например, изолированное сгибание пальцев руки невозможно без одновременной активации разгибателей кисти, препятствующих действию сгибателей пальцев в лучезапястном сочленении.
Формы участия мышц в осуществлении двигательных актов весьма многообразны. Анатомическая классификация мышц (например, сгибатели и разгибатели, синергисты и антагонисты) не всегда соответствует их функциональной роли в движениях. Так, некоторые двухсуставные мышцы в одном суставе осуществляют сгибание, а в другом – разгибание. Антагонист может возбуждаться одновременно с агонистом для обеспечения точности движения, и его участие помогает выполнить двигательную задачу. В связи с этим в каждом конкретном двигательном акте можно выделить основную мышцу (основной двигатель), вспомогательные мышцы (синергисты), антагонисты и стабилизаторы (мышцы, которые фиксируют не участвующие в движении суставы). Мышцы не только сокращаются, приводя в движение соответствующие звенья: антагонисты и стабилизаторы часто функционируют в режиме растяжения под нагрузкой, при этом поглощая и рассеивая энергию. Этот режим используется для плавного торможения движений и амортизации толчков. При поддержании позы многие мышцы работают в режиме, при котором их длина практически не изменяется.
На конечный результат движения влияют не только силы, развиваемые мышцами, но и силы немышечного происхождения. К ним относятся силы инерции, создаваемые массами звеньев тела, которые вовлекаются в движение, а также силы реакции, возникающие в кинематических цепях при смещении любого из звеньев. Движение смещает различные звенья тела друг относительно друга и меняет конфигурацию тела, а следовательно, по ходу движения изменяются моменты упомянутых сил. Вследствие изменения суставных углов меняются и моменты мышечных сил. На ход движения влияет и гравитация: моменты сил веса тоже изменяются в процессе движения из-за изменения ориентации звеньев относительно вектора силы тяжести. В практической деятельности человек вступает во взаимодействие с предметами внешнего мира, различными инструментами, перемещаемыми грузами и т.д.; в процессе этого взаимодействия ему приходится преодолевать силы тяжести, упругости, трения, вязкости и инерции. Силы немышечного происхождения вмешиваются в процесс движения и делают необходимым непрерывное согласование с ними деятельности мышечного аппарата. Кроме того, необходимо нейтрализовывать действие непредвиденных помех, которые могут возникать во внешней среде, и оперативно исправлять допущеные в ходе реализации движения ошибки.
Наряду с этими помехами, возникающими при осуществлении движения, существует ещё одна принципиальная сложность, возникающая ещё на этапе планирования движения. Речь идёт о так называемой проблеме избыточности степеней свободы двигательного аппарата. Для того чтобы в трёхмерном пространстве достичь любой заданной точки (в пределах длины конечности), достаточно иметь двухзвенную конечность с двумя степенями свободы в проксимальном суставе («плече») и одной степенью свободы в дистальном («локтевом»). На самом деле конечности имеют большее количество звеньев и число степеней свободы. Именно поэтому, если бы мы захотели решить геометрическую задачу о том, как должны изменяться углы в суставах, для того чтобы рабочая точка конечности переместилась из одного заданного положения в пространстве в другое, то оказалось бы, что эта задача имеет бесконечное множество решений.
Для того чтобы найти однозначное решение задачи управления для кинематической цепи, необходимо исключить избыточные для данного движения степени свободы. Этого можно достичь двумя способами: а) можно зафиксировать избыточные степени свободы путём одновременной активации антагонистических групп мышц (коактивация) и б) можно связать движения в разных суставах определёнными соотношениями, уменьшив таким образом количество независимых переменных, с которыми должна иметь дело ЦНС. Такие устойчивые сочетания одновременных движений в нескольких суставах, направленных на достижение единой цели, получили название синергий. Синергии чаще всего используются в относительно стереотипных, часто используемых движениях, таких, как локомоция, некоторые трудовые движения и др. Вместе с тем двигательные синергии не являются синонимами двигательных стереотипов – для них характерна определённая степень адаптивности.
33. Схема тела в ЦНС
В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.
Необходимость внутренних моделей для управления движениями связана со спецификой сенсомоторной системы.
1. Большинство рецепторов расположено на подвижных звеньях тела – следовательно, они собирают информацию в собственных локальных системах координат. Для того чтобы воспользоваться этой информацией, её нужно преобразовать в единую систему координат или, как минимум, обеспечить возможность двухсторонних переходов.
2. Для управления движениями мозгу необходимы величины, которые не содержатся непосредственно в первичных сигналах рецепторов. К подобным величинам относятся такие, как длины кинематических звеньев, положения парциальных и общего центра масс. Кроме того, в первичных сенсорных сигналах не содержатся самые общие сведения о кинематической структуре тела: количестве и последовательности звеньев, числе степеней свободы и объёме движений в суставах.
3. Ход выполнения движения оценивается путём сравнения реальной афферентации с ожидаемой (эфферентная копия). Для многозвенных кинематических цепей, оснащённых рецепторами разных модальностей, эфферентная копия оказывается достаточно сложной, и для её построения также требуется внутренняя модель.
Вывод о наличии в ЦНС модели собственного тела был впервые сделан на основе клинических наблюдений фантома ампутированных, известного с глубокой древности. Человек, утративший конечность, в течение длительного времени субъективно продолжает ощущать её присутствие. Речь идёт не о редком феномене, проявляющимся в исключительных ситуациях: фантом после ампутации наблюдается более чем в 90% случаев. Описаны случаи фантома у детей и при врождённом отсутствии конечности. Это означает, что по меньшей мере некоторые элементы внутренней модели или, как её называют, «схемы тела», относятся к врождённым.
Характерные черты ампутационного фантома могут быть воспроизведены на здоровом человеке при выключенном зрении, в условиях блокады проведения импульсов, поступающих в мозг от кожных, суставных и мышечных рецепторов руки по чувствительным нервам. Блокировать чувствительность можно, вводя анестетик в плечевое сплетение или временно останавливая кровоток в руке (ишемическая деафферентация). Оказалось, что в этих условиях наблюдается своего рода «экспериментальный фантом», рассогласование реального и воспринимаемого положения конечности, достигающее порой значительных величин [Гурфинкель, Левик, 1991а]. Когда испытуемого просили совершить движение ишемизированной рукой, он планировал его, исходя из того, как в данный момент рука была представлена в системе внутреннего представления, а не из её реального положения.
В условиях ишемической деафферентации, несмотря на отсутствие проприоцептивного притока, не возникает ощущения «исчезновения» руки либо её дистальных звеньев. Это означает, что в ЦНС имеется своего рода список звеньев тела, составляющие которого обладают консерватизмом и устойчивостью к разного рода изменениям периферии. Сохранение кинестатических ощущений можно объяснить тем, что осознание положения кинематических звеньев происходит не на основе «сырой» афферентации, а на базе сложной информационной структуры – «схемы конечности», её внутренней модели. При изменении или резком снижении афферентации нарушается «привязка» этой модели к физическому пространству, может наблюдаться и дрейф отдельных её параметров, но сама модель сохраняется и служит базой для восприятия конечности и планирования её движений.
Другим источником представлений о схеме тела явились клинические наблюдения, показывающие, что некоторые формы церебральной патологии, особенно поражения правой теменной доли, приводят к возникновению стойких искажённых представлений о собственном теле и окружающем пространстве. Среди этих нарушений встречаются одностороннее игнорирование одной конечности или половины тела на поражённой стороне (контралатеральной по отношению к поражённому полушарию); аллостезия – восприятие стимулов, приложенных к больной стороне, как приложенных к здоровой стороне, отрицание дефекта, иллюзорные движения поражённых конечностей, отрицание принадлежности больному поражённых конечностей; ослабление осознания частей тела (асхематия и гемидеперсонализация); фантомные дополнительные конечности.
Разнообразие клинических проявлений, обусловленных нарушениями схемы тела, указывает на сложность выполняемых ею функций. Кроме того, видно, что всё многообразие нарушений распадается на три группы: а) нарушение представлений о принадлежности частей тела; б) нарушение правильных представлений о форме, размерах и положении частей тела и в) иллюзорные движения.
С точки зрения схемы тела представляют интерес и исследования так называемых «изменённых состояний сознания», возникающих у здоровых людей под действием галлюциногенов, гипноза, сенсорной депривации, во сне и т.д. Из всего многообразия феноменов изменённого состояния сознания выделяют группу этиологически независимых, т.е. не зависящих от природы агента, вызвавшего такое состояние. Треть из этих феноменов имеет непосредственное отношение к схеме тела и моторике. Люди, испытавшие изменённые состояния сознания, часто сообщают что-либо из далее перечисленного: граница между телом и окружением была размытой; опора представлялась качающейся; конечности казались больше, чем обычно; окружающие предметы были больше, чем обычно; тело исчезало; тело представлялось плавающим; окружение казалось нереальным; «я» и окружение представлялись единым целым; терялась возможность управлять движениями своего тела; части тела больше им не принадлежали. Из этого перечня видно, что и здесь можно выделить нарушения, связанные с восприятием целостности тела и его границ, размеров отдельных звеньев и нарушениями двигательных возможностей организма. В сравнении с клиническими проявлениями, характерными для органических поражений мозга, здесь можно выделить ещё одну сторону, связанную с нарушениями взаимоотношений между телом и внешним пространством: плавание, качающаяся опора и др. (т.е. с трудностями в формировании системы отсчёта).
Но, возможно, не стоит слишком сильно расширять перечень функций, выполняемых схемой тела, а отнести к ним только описание таких стабильных характеристик тела, как разделение на туловище и присоединённые к нему голову и конечности, последовательность и длины звеньев конечностей, число степеней свободы и объёмы движений в суставах, расположение мышц и основных рецептивных полей. Без этого описания невозможен ни анализ поступающих от многочисленных рецепторов сигналов о теле (соместезия), ни реализация моторных программ. Задачу описания текущего положения тела и его конфигурации в рамках соответствующей системы отсчёта целесообразно отнести к функциям системы внутреннего представления собственного тела. Такое разделение – это не просто вопрос терминологии, в его пользу говорит тесная связь между представлением собственного тела и окружающего (экстраперсонального) пространства, включая как общие закономерности формирования представления о теле и ближнем пространстве, так и во многом общий анатомический субстрат. Последнее подтверждается тем, что при поражениях определённых структур ЦНС нарушения восприятия пространства и собственного тела сопутствуют друг другу.
Подавляющая часть наших движений пространственно ориентированы, т.е. направлены на достижение определённой точки в пространстве. Пространственно ориентированной является и поза (относительно опоры, гравитационной вертикали и структуры зрительного окружения). Именно поэтому управление позой и движениями требует системы отсчёта, в которой представлено как тело, так и окружающее пространство. Из физики известно, что всякое движение относительно, поэтому говорить о движении имеет смысл только в том случае, если указано, в какой системе отсчёта это движение происходит. В последнее время изучением системы внутреннего представления и системами отсчёта начали заниматься и нейрофизиологи. В результате появилось много экспериментальных данных, свидетельствующих о том, что система внутреннего представления пространства реально существует и доступна изучению. Например, установлено, что можно мысленно манипулировать трёхмерными объектами так же, как и их реальными физическими прототипами. Система внутреннего представления работает не просто с двухмерной проекцией предмета, аналогичной сетчаточному изображению, а с его трёхмерной моделью. Это следует из опытов, в которых на экране человеку предъявляли два идентичных или зеркальных предмета в разной ориентации. Для того чтобы установить, одинаковы ли показанные предметы, мозг конструировал необходимый мысленный путь для преобразования (поворот или перемещение). Выбирался не случайный, а простейший и кратчайший путь. Время мысленного манипулирования линейно зависело от угла поворота, необходимого для того, чтобы привести объекты к одной ориентации. Индикатором процессов внутреннего моделирования двигательных актов может быть усиление локального мозгового кровотока в двигательных центрах мозга, обнаруженное при многих типах мысленных движений. Так, избирательная активация кровотока в области классических речевых центров левого полушария наблюдается при невокализованной речи, например счёте про себя.
В зависимости от того, выполняются ли движения относительно собственного тела или относительно системы координат, связанной с экстраперсональным пространством, изменяется активность нейронов в различных областях мозга.
Своеобразным клиническим подтверждением существования системы внутреннего представления служит «геминеглект», т.е. игнорирование пациентом половины своего тела и внешнего пространства (обычно левой) при поражениях правой теменной доли, несмотря на сохранность элементарных сенсорных и моторных функций. Геминеглект связывали с дефицитом внимания и нарушениями программирования движений, однако многие данные свидетельствуют о том, что дефект затрагивает именно систему внутреннего представления.
В классическом эксперименте пациента-миланца просили представить себя стоящим спиной к знаменитому собору в Милане и описать расположенную перед ним площадь. Пациент называл или рисовал только здания, находящиеся с правой стороны площади, игнорируя её левую часть. Затем его просили представить себя стоящим на противоположной стороне площади лицом к собору и вновь описать открывающуюся панораму. Пациент опять описывал только правую половину площади, но при новой ориентации в сферу его внимания попадали здания, которые игнорировались в первом случае. Это означает, что внутренняя модель у пациента была полной, но он имел доступ только к одной половине этого представления, менявшейся в зависимости от ориентации его тела, т.е. от избранной системы отсчёта. Таким образом, при операциях с внутренним представлением пространства проявлялся тот же дефект, что и при рассматривании реальных объектов.
Известные способы изучения системы внутреннего представления ориентированы главным образом на её роль в восприятии. Однако в последнее время появились новые экспериментальные подходы, базирующиеся на традиционных методах физиологии движений, а не ориентированные исключительно на перцепцию и словесные отчёты. На осознаваемом уровне отражается лишь небольшая часть работы нервной системы при выполнении пространственно ориентированных действий. Поэтому можно полагать, что большинство интегративных действий, выполняемых внутренней моделью тела, протекает на подсознательном уровне. Примером таких действий могут служить описанные Р. Магнусом шейные и вестибулярные «позные» автоматизмы, участвующие в поддержании нормального положения тела и восстановлении нарушенного равновесия у животных. У здорового взрослого человека в состоянии покоя шейные влияния на мускулатуру туловища и конечностей незаметны, но выявляются на фоне тонических реакций, вызванных вибрационной стимуляцией мышечных рецепторов. У сидящего человека, стопы которого не имеют контакта с полом, вибрация ахилловых сухожилий вызывает двухстороннюю активацию четырёхглавых мышц и разгибание ног в коленных суставах. Поворот головы относительно вертикальной оси сопровождается нарушением симметрии реакции: она усиливается на «затылочной» ноге и ослабляется на «подбородочной». Такая же реакция наблюдается в ответ на непроизвольный поворот головы при вибрации шейных мышц.
Известно, что вибрация сухожилия или брюшка мышцы с частотой, вызывающей активацию мышечных рецепторов растяжения, может приводить к возникновению локального тонического вибрационного рефлекса – сокращению мышцы, подвергающейся вибрации. В результате возникает движение соответствующего звена. Если его предотвратить с помощью жёсткой фиксации, то тонический вибрационный рефлекс, как правило, не развивается, зато появляется иллюзия движения звена в направлении, противоположном тому, в котором происходило бы реальное движение в отсутствие фиксации. Так, вибрацией соответствующих шейных мышц можно вызвать поворот головы, а при её фиксации в среднем положении при той же вибрации у испытуемых создавалась иллюзия поворота головы в противоположную сторону.
При иллюзорном повороте ассиметрия движения ног имела знак, соответствующий направлению иллюзии, причём она была выражена даже сильнее, чем при реальном повороте головы. Это показывает, что вибрационная стимуляция одних и тех же афферентов может оказывать прямо противоположное модулирующее влияние на тоническую активность мышц ног в зависимости от состояния системы внутреннего представления [Гурфинкель и др., 1991б].
Известен феномен изменения направления отклонения тела при гальванической вестибулярной пробе в зависимости от ориентации (поворота) головы. Оказалось, что сходный эффект можно получить и в том случае, когда вместо реального поворота головы вызывалась иллюзия такого поворота. Таким образом, «позные» автоматизмы модулируются внутренним представлением о конфигурации тела. Кроме того, система внутреннего представления должна включать также систему координат, в которой описываются ориентация и движение тела относительно внешнего пространства. В зависимости от ситуации и двигательной задачи организм может использовать систему отсчёта, связанную с корпусом, с головой, с внешним пространством или с каким-либо подвижным объектом. Переход от одной системы координат к другой влияет не только на восприятие, но и на двигательные реакции, обычно относимые к автоматическим.
Так, медленные повороты корпуса относительно фиксированной в пространстве головы вызывают иллюзию движения головы относительно неподвижного корпуса. Это показывает, что система внутреннего представления склонна использовать систему координат, связанную с корпусом, и интерпретировать взаимный поворот головы и корпуса как вращение головы относительно неподвижного корпуса. Однако в условиях данного эксперимента можно вызвать переход от эгоцентрической системы координат (связанной с корпусом) к экзоцентрической (связанной с внешним пространством). Для этого испытуемого просили захватить рукой рукоятку, жёстко закреплённую на массивном неподвижном столе. Информация о взаимном перемещении корпуса и рукоятки, а также априорное представление о том, что рукоятка несмещаема, приводили к переходу от эгоцентрической системы координат к экзоцентрической – у испытуемого появлялись ощущения поворотов корпуса, который ранее воспринимался неподвижным, соответственно исчезали и ощущения поворотов головы.
Переход от одной системы координат к другой подтверждался не только субъективным отчётом испытуемого, но и ярко выраженными изменениями реакций глазодвигательного аппарата. Если вначале амплитуда движения глаз в направлении иллюзорного поворота головы превосходила амплитуду поворотов корпуса, то после захвата рукоятки она уменьшалась в 3–4 раза [Гурфинкель, Левик, 1995].
Итак, нейронная модель тела, механизмы построения систем отсчёта, набор базисных моторных автоматизмов и алгоритмов их согласования составляют основу, на которой формируется внутреннее представление о собственном теле и окружающем пространстве. Система внутреннего представления играет ведущую роль в задачах переработки сенсорной информации и реализации пространственно ориентированных движений. Реакции, которые на животных считаются классическими примерами рефлекторных «позных» автоматизмов, у человека в сильной степени определяются тем, как описывается взаимное положение головы, туловища и конечностей в этой системе. Такое описание требует определённой системы отсчёта. Переход из одной системы координат в другую ведёт к изменению интерпретации сенсорных сигналов и модификации двигательных реакций, возникающих в ответ на эти сигналы. Выбор системы отсчёта во многом определяется априорными сведениями об объектах внешнего мира, с которыми человек поддерживает контакт (жёсткость, несмещаемость и др.).